This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1fima2 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( vol ‘ ( ◡ 𝐹 “ 𝐴 ) ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol ) |
| 3 | mblvol | ⊢ ( ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ 𝐴 ) ) = ( vol* ‘ ( ◡ 𝐹 “ 𝐴 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( vol ‘ ( ◡ 𝐹 “ 𝐴 ) ) = ( vol* ‘ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 5 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 7 | ffun | ⊢ ( 𝐹 : ℝ ⟶ ℝ → Fun 𝐹 ) | |
| 8 | inpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) = ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) = ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) ) |
| 10 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 | |
| 11 | cnvimarndm | ⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 | |
| 12 | 10 11 | sseqtrri | ⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) |
| 13 | dfss2 | ⊢ ( ( ◡ 𝐹 “ 𝐴 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) ↔ ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ◡ 𝐹 “ 𝐴 ) ) | |
| 14 | 12 13 | mpbi | ⊢ ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ◡ 𝐹 “ 𝐴 ) |
| 15 | 9 14 | eqtr2di | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( ◡ 𝐹 “ 𝐴 ) = ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) ) |
| 16 | elinel1 | ⊢ ( 0 ∈ ( 𝐴 ∩ ran 𝐹 ) → 0 ∈ 𝐴 ) | |
| 17 | 16 | con3i | ⊢ ( ¬ 0 ∈ 𝐴 → ¬ 0 ∈ ( 𝐴 ∩ ran 𝐹 ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ¬ 0 ∈ ( 𝐴 ∩ ran 𝐹 ) ) |
| 19 | disjsn | ⊢ ( ( ( 𝐴 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ( 𝐴 ∩ ran 𝐹 ) ) | |
| 20 | 18 19 | sylibr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( ( 𝐴 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ) |
| 21 | inss2 | ⊢ ( 𝐴 ∩ ran 𝐹 ) ⊆ ran 𝐹 | |
| 22 | 5 | frnd | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ ) |
| 23 | 21 22 | sstrid | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝐴 ∩ ran 𝐹 ) ⊆ ℝ ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( 𝐴 ∩ ran 𝐹 ) ⊆ ℝ ) |
| 25 | reldisj | ⊢ ( ( 𝐴 ∩ ran 𝐹 ) ⊆ ℝ → ( ( ( 𝐴 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ↔ ( 𝐴 ∩ ran 𝐹 ) ⊆ ( ℝ ∖ { 0 } ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( ( ( 𝐴 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ↔ ( 𝐴 ∩ ran 𝐹 ) ⊆ ( ℝ ∖ { 0 } ) ) ) |
| 27 | 20 26 | mpbid | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( 𝐴 ∩ ran 𝐹 ) ⊆ ( ℝ ∖ { 0 } ) ) |
| 28 | imass2 | ⊢ ( ( 𝐴 ∩ ran 𝐹 ) ⊆ ( ℝ ∖ { 0 } ) → ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) ⊆ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) ⊆ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) |
| 30 | 15 29 | eqsstrd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( ◡ 𝐹 “ 𝐴 ) ⊆ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) |
| 31 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ∈ dom vol ) | |
| 32 | 31 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ∈ dom vol ) |
| 33 | mblss | ⊢ ( ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ∈ dom vol → ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ⊆ ℝ ) | |
| 34 | 32 33 | syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ⊆ ℝ ) |
| 35 | mblvol | ⊢ ( ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) = ( vol* ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ) | |
| 36 | 32 35 | syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) = ( vol* ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ) |
| 37 | isi1f | ⊢ ( 𝐹 ∈ dom ∫1 ↔ ( 𝐹 ∈ MblFn ∧ ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) | |
| 38 | 37 | simprbi | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) |
| 39 | 38 | simp3d | ⊢ ( 𝐹 ∈ dom ∫1 → ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) |
| 40 | 39 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) |
| 41 | 36 40 | eqeltrrd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( vol* ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) |
| 42 | ovolsscl | ⊢ ( ( ( ◡ 𝐹 “ 𝐴 ) ⊆ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ∧ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) → ( vol* ‘ ( ◡ 𝐹 “ 𝐴 ) ) ∈ ℝ ) | |
| 43 | 30 34 41 42 | syl3anc | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( vol* ‘ ( ◡ 𝐹 “ 𝐴 ) ) ∈ ℝ ) |
| 44 | 4 43 | eqeltrd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴 ) → ( vol ‘ ( ◡ 𝐹 “ 𝐴 ) ) ∈ ℝ ) |