This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1fima2 | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol ` ( `' F " A ) ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fima | |- ( F e. dom S.1 -> ( `' F " A ) e. dom vol ) |
|
| 2 | 1 | adantr | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " A ) e. dom vol ) |
| 3 | mblvol | |- ( ( `' F " A ) e. dom vol -> ( vol ` ( `' F " A ) ) = ( vol* ` ( `' F " A ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol ` ( `' F " A ) ) = ( vol* ` ( `' F " A ) ) ) |
| 5 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 6 | 5 | adantr | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> F : RR --> RR ) |
| 7 | ffun | |- ( F : RR --> RR -> Fun F ) |
|
| 8 | inpreima | |- ( Fun F -> ( `' F " ( A i^i ran F ) ) = ( ( `' F " A ) i^i ( `' F " ran F ) ) ) |
|
| 9 | 6 7 8 | 3syl | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " ( A i^i ran F ) ) = ( ( `' F " A ) i^i ( `' F " ran F ) ) ) |
| 10 | cnvimass | |- ( `' F " A ) C_ dom F |
|
| 11 | cnvimarndm | |- ( `' F " ran F ) = dom F |
|
| 12 | 10 11 | sseqtrri | |- ( `' F " A ) C_ ( `' F " ran F ) |
| 13 | dfss2 | |- ( ( `' F " A ) C_ ( `' F " ran F ) <-> ( ( `' F " A ) i^i ( `' F " ran F ) ) = ( `' F " A ) ) |
|
| 14 | 12 13 | mpbi | |- ( ( `' F " A ) i^i ( `' F " ran F ) ) = ( `' F " A ) |
| 15 | 9 14 | eqtr2di | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " A ) = ( `' F " ( A i^i ran F ) ) ) |
| 16 | elinel1 | |- ( 0 e. ( A i^i ran F ) -> 0 e. A ) |
|
| 17 | 16 | con3i | |- ( -. 0 e. A -> -. 0 e. ( A i^i ran F ) ) |
| 18 | 17 | adantl | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> -. 0 e. ( A i^i ran F ) ) |
| 19 | disjsn | |- ( ( ( A i^i ran F ) i^i { 0 } ) = (/) <-> -. 0 e. ( A i^i ran F ) ) |
|
| 20 | 18 19 | sylibr | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( ( A i^i ran F ) i^i { 0 } ) = (/) ) |
| 21 | inss2 | |- ( A i^i ran F ) C_ ran F |
|
| 22 | 5 | frnd | |- ( F e. dom S.1 -> ran F C_ RR ) |
| 23 | 21 22 | sstrid | |- ( F e. dom S.1 -> ( A i^i ran F ) C_ RR ) |
| 24 | 23 | adantr | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( A i^i ran F ) C_ RR ) |
| 25 | reldisj | |- ( ( A i^i ran F ) C_ RR -> ( ( ( A i^i ran F ) i^i { 0 } ) = (/) <-> ( A i^i ran F ) C_ ( RR \ { 0 } ) ) ) |
|
| 26 | 24 25 | syl | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( ( ( A i^i ran F ) i^i { 0 } ) = (/) <-> ( A i^i ran F ) C_ ( RR \ { 0 } ) ) ) |
| 27 | 20 26 | mpbid | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( A i^i ran F ) C_ ( RR \ { 0 } ) ) |
| 28 | imass2 | |- ( ( A i^i ran F ) C_ ( RR \ { 0 } ) -> ( `' F " ( A i^i ran F ) ) C_ ( `' F " ( RR \ { 0 } ) ) ) |
|
| 29 | 27 28 | syl | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " ( A i^i ran F ) ) C_ ( `' F " ( RR \ { 0 } ) ) ) |
| 30 | 15 29 | eqsstrd | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " A ) C_ ( `' F " ( RR \ { 0 } ) ) ) |
| 31 | i1fima | |- ( F e. dom S.1 -> ( `' F " ( RR \ { 0 } ) ) e. dom vol ) |
|
| 32 | 31 | adantr | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " ( RR \ { 0 } ) ) e. dom vol ) |
| 33 | mblss | |- ( ( `' F " ( RR \ { 0 } ) ) e. dom vol -> ( `' F " ( RR \ { 0 } ) ) C_ RR ) |
|
| 34 | 32 33 | syl | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " ( RR \ { 0 } ) ) C_ RR ) |
| 35 | mblvol | |- ( ( `' F " ( RR \ { 0 } ) ) e. dom vol -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) = ( vol* ` ( `' F " ( RR \ { 0 } ) ) ) ) |
|
| 36 | 32 35 | syl | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) = ( vol* ` ( `' F " ( RR \ { 0 } ) ) ) ) |
| 37 | isi1f | |- ( F e. dom S.1 <-> ( F e. MblFn /\ ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |
|
| 38 | 37 | simprbi | |- ( F e. dom S.1 -> ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
| 39 | 38 | simp3d | |- ( F e. dom S.1 -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) |
| 40 | 39 | adantr | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) |
| 41 | 36 40 | eqeltrrd | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol* ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) |
| 42 | ovolsscl | |- ( ( ( `' F " A ) C_ ( `' F " ( RR \ { 0 } ) ) /\ ( `' F " ( RR \ { 0 } ) ) C_ RR /\ ( vol* ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) -> ( vol* ` ( `' F " A ) ) e. RR ) |
|
| 43 | 30 34 41 42 | syl3anc | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol* ` ( `' F " A ) ) e. RR ) |
| 44 | 4 43 | eqeltrd | |- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol ` ( `' F " A ) ) e. RR ) |