This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move a scalar product out of a composition of operators. The operator T must be linear, unlike homco1 that works for any operators. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homco2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) = ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℂ ) | |
| 2 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝑈 : ℋ ⟶ ℋ ) | |
| 3 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) | |
| 4 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑈 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑈 ‘ 𝑥 ) ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑈 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑈 ‘ 𝑥 ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·op 𝑈 ) ‘ 𝑥 ) ) = ( 𝑇 ‘ ( 𝐴 ·ℎ ( 𝑈 ‘ 𝑥 ) ) ) ) |
| 7 | homulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑈 ) : ℋ ⟶ ℋ ) | |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑈 ) : ℋ ⟶ ℋ ) |
| 9 | fvco3 | ⊢ ( ( ( 𝐴 ·op 𝑈 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) ‘ 𝑥 ) = ( 𝑇 ‘ ( ( 𝐴 ·op 𝑈 ) ‘ 𝑥 ) ) ) | |
| 10 | 8 9 | sylan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) ‘ 𝑥 ) = ( 𝑇 ‘ ( ( 𝐴 ·op 𝑈 ) ‘ 𝑥 ) ) ) |
| 11 | fvco3 | ⊢ ( ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) | |
| 12 | 2 3 11 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) ) |
| 14 | lnopf | ⊢ ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → 𝑇 : ℋ ⟶ ℋ ) |
| 16 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → 𝑈 : ℋ ⟶ ℋ ) | |
| 17 | fco | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ) |
| 20 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) ) | |
| 21 | 1 19 3 20 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 22 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝑇 ∈ LinOp ) | |
| 23 | 16 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑈 ‘ 𝑥 ) ∈ ℋ ) |
| 24 | lnopmul | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ ( 𝑈 ‘ 𝑥 ) ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ ( 𝑈 ‘ 𝑥 ) ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) ) | |
| 25 | 22 1 23 24 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ ( 𝑈 ‘ 𝑥 ) ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) ) |
| 26 | 13 21 25 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝐴 ·ℎ ( 𝑈 ‘ 𝑥 ) ) ) ) |
| 27 | 6 10 26 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) ) |
| 28 | 27 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → ∀ 𝑥 ∈ ℋ ( ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) ) |
| 29 | fco | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ·op 𝑈 ) : ℋ ⟶ ℋ ) → ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) : ℋ ⟶ ℋ ) | |
| 30 | 15 8 29 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) : ℋ ⟶ ℋ ) |
| 31 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → 𝐴 ∈ ℂ ) | |
| 32 | homulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) : ℋ ⟶ ℋ ) | |
| 33 | 31 18 32 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) : ℋ ⟶ ℋ ) |
| 34 | hoeq | ⊢ ( ( ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) : ℋ ⟶ ℋ ∧ ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) ↔ ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) = ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ) ) | |
| 35 | 30 33 34 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) ↔ ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) = ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ) ) |
| 36 | 28 35 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 ∘ ( 𝐴 ·op 𝑈 ) ) = ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ) |