This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homco1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) = ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco3 | ⊢ ( ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐴 ·op 𝑇 ) ‘ ( 𝑈 ‘ 𝑥 ) ) ) | |
| 2 | 1 | 3ad2antl3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐴 ·op 𝑇 ) ‘ ( 𝑈 ‘ 𝑥 ) ) ) |
| 3 | fvco3 | ⊢ ( ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) | |
| 4 | 3 | 3ad2antl3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) |
| 5 | 4 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) ) |
| 6 | ffvelcdm | ⊢ ( ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑈 ‘ 𝑥 ) ∈ ℋ ) | |
| 7 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑈 ‘ 𝑥 ) ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( 𝑈 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) ) | |
| 8 | 6 7 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( 𝑈 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) ) |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( 𝑈 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) ) |
| 10 | 9 | exp43 | ⊢ ( 𝐴 ∈ ℂ → ( 𝑇 : ℋ ⟶ ℋ → ( 𝑈 : ℋ ⟶ ℋ → ( 𝑥 ∈ ℋ → ( ( 𝐴 ·op 𝑇 ) ‘ ( 𝑈 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) ) ) ) ) |
| 11 | 10 | 3imp1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( 𝑈 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( 𝑈 ‘ 𝑥 ) ) ) ) |
| 12 | 5 11 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) = ( ( 𝐴 ·op 𝑇 ) ‘ ( 𝑈 ‘ 𝑥 ) ) ) |
| 13 | 2 12 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 14 | fco | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ) | |
| 15 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) ) | |
| 16 | 14 15 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 17 | 16 | 3expia | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ) → ( 𝑥 ∈ ℋ → ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 18 | 17 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ → ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 19 | 18 | imp | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 20 | 13 19 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) ) |
| 21 | 20 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) ) |
| 22 | homulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) | |
| 23 | fco | ⊢ ( ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) : ℋ ⟶ ℋ ) | |
| 24 | 22 23 | stoic3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) : ℋ ⟶ ℋ ) |
| 25 | homulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) : ℋ ⟶ ℋ ) | |
| 26 | 14 25 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ) → ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) : ℋ ⟶ ℋ ) |
| 27 | 26 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) : ℋ ⟶ ℋ ) |
| 28 | hoeq | ⊢ ( ( ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) : ℋ ⟶ ℋ ∧ ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) ↔ ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) = ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ) ) | |
| 29 | 24 27 28 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ‘ 𝑥 ) ↔ ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) = ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ) ) |
| 30 | 21 29 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ∘ 𝑈 ) = ( 𝐴 ·op ( 𝑇 ∘ 𝑈 ) ) ) |