This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move a scalar product out of a composition of operators. The operator T must be linear, unlike homco1 that works for any operators. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homco2 | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> ( T o. ( A .op U ) ) = ( A .op ( T o. U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> A e. CC ) |
|
| 2 | simpl3 | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> U : ~H --> ~H ) |
|
| 3 | simpr | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> x e. ~H ) |
|
| 4 | homval | |- ( ( A e. CC /\ U : ~H --> ~H /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
| 6 | 5 | fveq2d | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( T ` ( ( A .op U ) ` x ) ) = ( T ` ( A .h ( U ` x ) ) ) ) |
| 7 | homulcl | |- ( ( A e. CC /\ U : ~H --> ~H ) -> ( A .op U ) : ~H --> ~H ) |
|
| 8 | 7 | 3adant2 | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> ( A .op U ) : ~H --> ~H ) |
| 9 | fvco3 | |- ( ( ( A .op U ) : ~H --> ~H /\ x e. ~H ) -> ( ( T o. ( A .op U ) ) ` x ) = ( T ` ( ( A .op U ) ` x ) ) ) |
|
| 10 | 8 9 | sylan | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( T o. ( A .op U ) ) ` x ) = ( T ` ( ( A .op U ) ` x ) ) ) |
| 11 | fvco3 | |- ( ( U : ~H --> ~H /\ x e. ~H ) -> ( ( T o. U ) ` x ) = ( T ` ( U ` x ) ) ) |
|
| 12 | 2 3 11 | syl2anc | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( T o. U ) ` x ) = ( T ` ( U ` x ) ) ) |
| 13 | 12 | oveq2d | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T o. U ) ` x ) ) = ( A .h ( T ` ( U ` x ) ) ) ) |
| 14 | lnopf | |- ( T e. LinOp -> T : ~H --> ~H ) |
|
| 15 | 14 | 3ad2ant2 | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> T : ~H --> ~H ) |
| 16 | simp3 | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> U : ~H --> ~H ) |
|
| 17 | fco | |- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T o. U ) : ~H --> ~H ) |
|
| 18 | 15 16 17 | syl2anc | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> ( T o. U ) : ~H --> ~H ) |
| 19 | 18 | adantr | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( T o. U ) : ~H --> ~H ) |
| 20 | homval | |- ( ( A e. CC /\ ( T o. U ) : ~H --> ~H /\ x e. ~H ) -> ( ( A .op ( T o. U ) ) ` x ) = ( A .h ( ( T o. U ) ` x ) ) ) |
|
| 21 | 1 19 3 20 | syl3anc | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T o. U ) ) ` x ) = ( A .h ( ( T o. U ) ` x ) ) ) |
| 22 | simpl2 | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> T e. LinOp ) |
|
| 23 | 16 | ffvelcdmda | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( U ` x ) e. ~H ) |
| 24 | lnopmul | |- ( ( T e. LinOp /\ A e. CC /\ ( U ` x ) e. ~H ) -> ( T ` ( A .h ( U ` x ) ) ) = ( A .h ( T ` ( U ` x ) ) ) ) |
|
| 25 | 22 1 23 24 | syl3anc | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( T ` ( A .h ( U ` x ) ) ) = ( A .h ( T ` ( U ` x ) ) ) ) |
| 26 | 13 21 25 | 3eqtr4d | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T o. U ) ) ` x ) = ( T ` ( A .h ( U ` x ) ) ) ) |
| 27 | 6 10 26 | 3eqtr4d | |- ( ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( T o. ( A .op U ) ) ` x ) = ( ( A .op ( T o. U ) ) ` x ) ) |
| 28 | 27 | ralrimiva | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> A. x e. ~H ( ( T o. ( A .op U ) ) ` x ) = ( ( A .op ( T o. U ) ) ` x ) ) |
| 29 | fco | |- ( ( T : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) -> ( T o. ( A .op U ) ) : ~H --> ~H ) |
|
| 30 | 15 8 29 | syl2anc | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> ( T o. ( A .op U ) ) : ~H --> ~H ) |
| 31 | simp1 | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> A e. CC ) |
|
| 32 | homulcl | |- ( ( A e. CC /\ ( T o. U ) : ~H --> ~H ) -> ( A .op ( T o. U ) ) : ~H --> ~H ) |
|
| 33 | 31 18 32 | syl2anc | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> ( A .op ( T o. U ) ) : ~H --> ~H ) |
| 34 | hoeq | |- ( ( ( T o. ( A .op U ) ) : ~H --> ~H /\ ( A .op ( T o. U ) ) : ~H --> ~H ) -> ( A. x e. ~H ( ( T o. ( A .op U ) ) ` x ) = ( ( A .op ( T o. U ) ) ` x ) <-> ( T o. ( A .op U ) ) = ( A .op ( T o. U ) ) ) ) |
|
| 35 | 30 33 34 | syl2anc | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> ( A. x e. ~H ( ( T o. ( A .op U ) ) ` x ) = ( ( A .op ( T o. U ) ) ` x ) <-> ( T o. ( A .op U ) ) = ( A .op ( T o. U ) ) ) ) |
| 36 | 28 35 | mpbid | |- ( ( A e. CC /\ T e. LinOp /\ U : ~H --> ~H ) -> ( T o. ( A .op U ) ) = ( A .op ( T o. U ) ) ) |