This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnopmul | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 2 | lnopl | ⊢ ( ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) | |
| 3 | 1 2 | mpanr2 | ⊢ ( ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ) ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
| 4 | 3 | 3impa | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
| 5 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 6 | ax-hvaddid | ⊢ ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) ) |
| 10 | lnop0 | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) = 0ℎ ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑇 ∈ LinOp → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ 0ℎ ) ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ 0ℎ ) ) |
| 13 | lnopf | ⊢ ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
| 15 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) | |
| 16 | 14 15 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ ) ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) |
| 17 | 16 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) |
| 18 | 17 | 3com12 | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) |
| 19 | ax-hvaddid | ⊢ ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 21 | 12 20 | eqtrd | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 22 | 4 9 21 | 3eqtr3d | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |