This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idunop | ⊢ ( I ↾ ℋ ) ∈ UniOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | ⊢ ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ | |
| 2 | f1ofo | ⊢ ( ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ → ( I ↾ ℋ ) : ℋ –onto→ ℋ ) | |
| 3 | 1 2 | ax-mp | ⊢ ( I ↾ ℋ ) : ℋ –onto→ ℋ |
| 4 | fvresi | ⊢ ( 𝑥 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑥 ) = 𝑥 ) | |
| 5 | fvresi | ⊢ ( 𝑦 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑦 ) = 𝑦 ) | |
| 6 | 4 5 | oveqan12d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( I ↾ ℋ ) ‘ 𝑥 ) ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 7 | 6 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( I ↾ ℋ ) ‘ 𝑥 ) ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) |
| 8 | elunop | ⊢ ( ( I ↾ ℋ ) ∈ UniOp ↔ ( ( I ↾ ℋ ) : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( I ↾ ℋ ) ‘ 𝑥 ) ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) | |
| 9 | 3 7 8 | mpbir2an | ⊢ ( I ↾ ℋ ) ∈ UniOp |