This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve topological indiscreteness. (Contributed by FL, 18-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmphdis.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hmphindis | ⊢ ( 𝐽 ≃ { ∅ , 𝐴 } → 𝐽 = { ∅ , 𝑋 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmphdis.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | dfsn2 | ⊢ { ∅ } = { ∅ , ∅ } | |
| 3 | indislem | ⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } | |
| 4 | preq2 | ⊢ ( ( I ‘ 𝐴 ) = ∅ → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , ∅ } ) | |
| 5 | 4 2 | eqtr4di | ⊢ ( ( I ‘ 𝐴 ) = ∅ → { ∅ , ( I ‘ 𝐴 ) } = { ∅ } ) |
| 6 | 3 5 | eqtr3id | ⊢ ( ( I ‘ 𝐴 ) = ∅ → { ∅ , 𝐴 } = { ∅ } ) |
| 7 | 6 | breq2d | ⊢ ( ( I ‘ 𝐴 ) = ∅ → ( 𝐽 ≃ { ∅ , 𝐴 } ↔ 𝐽 ≃ { ∅ } ) ) |
| 8 | 7 | biimpac | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → 𝐽 ≃ { ∅ } ) |
| 9 | hmph0 | ⊢ ( 𝐽 ≃ { ∅ } ↔ 𝐽 = { ∅ } ) | |
| 10 | 8 9 | sylib | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → 𝐽 = { ∅ } ) |
| 11 | 10 | unieqd | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → ∪ 𝐽 = ∪ { ∅ } ) |
| 12 | 0ex | ⊢ ∅ ∈ V | |
| 13 | 12 | unisn | ⊢ ∪ { ∅ } = ∅ |
| 14 | 13 | eqcomi | ⊢ ∅ = ∪ { ∅ } |
| 15 | 11 1 14 | 3eqtr4g | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → 𝑋 = ∅ ) |
| 16 | 15 | preq2d | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → { ∅ , 𝑋 } = { ∅ , ∅ } ) |
| 17 | 2 10 16 | 3eqtr4a | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → 𝐽 = { ∅ , 𝑋 } ) |
| 18 | hmphen | ⊢ ( 𝐽 ≃ { ∅ , 𝐴 } → 𝐽 ≈ { ∅ , 𝐴 } ) | |
| 19 | necom | ⊢ ( ( I ‘ 𝐴 ) ≠ ∅ ↔ ∅ ≠ ( I ‘ 𝐴 ) ) | |
| 20 | fvex | ⊢ ( I ‘ 𝐴 ) ∈ V | |
| 21 | enpr2 | ⊢ ( ( ∅ ∈ V ∧ ( I ‘ 𝐴 ) ∈ V ∧ ∅ ≠ ( I ‘ 𝐴 ) ) → { ∅ , ( I ‘ 𝐴 ) } ≈ 2o ) | |
| 22 | 12 20 21 | mp3an12 | ⊢ ( ∅ ≠ ( I ‘ 𝐴 ) → { ∅ , ( I ‘ 𝐴 ) } ≈ 2o ) |
| 23 | 19 22 | sylbi | ⊢ ( ( I ‘ 𝐴 ) ≠ ∅ → { ∅ , ( I ‘ 𝐴 ) } ≈ 2o ) |
| 24 | 23 | adantl | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → { ∅ , ( I ‘ 𝐴 ) } ≈ 2o ) |
| 25 | 3 24 | eqbrtrrid | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → { ∅ , 𝐴 } ≈ 2o ) |
| 26 | entr | ⊢ ( ( 𝐽 ≈ { ∅ , 𝐴 } ∧ { ∅ , 𝐴 } ≈ 2o ) → 𝐽 ≈ 2o ) | |
| 27 | 18 25 26 | syl2an2r | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → 𝐽 ≈ 2o ) |
| 28 | hmphtop1 | ⊢ ( 𝐽 ≃ { ∅ , 𝐴 } → 𝐽 ∈ Top ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → 𝐽 ∈ Top ) |
| 30 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 31 | 29 30 | sylib | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 32 | en2top | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ≈ 2o ↔ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → ( 𝐽 ≈ 2o ↔ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) ) |
| 34 | 27 33 | mpbid | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) |
| 35 | 34 | simpld | ⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → 𝐽 = { ∅ , 𝑋 } ) |
| 36 | 17 35 | pm2.61dane | ⊢ ( 𝐽 ≃ { ∅ , 𝐴 } → 𝐽 = { ∅ , 𝑋 } ) |