This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2top | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ≈ 2o ↔ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → 𝐽 ≈ 2o ) | |
| 2 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝑋 ) | |
| 3 | 2 | ad2ant2rl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ ( 𝑋 = ∅ ∧ 𝑥 ∈ 𝐽 ) ) → 𝑥 ⊆ 𝑋 ) |
| 4 | simprl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ ( 𝑋 = ∅ ∧ 𝑥 ∈ 𝐽 ) ) → 𝑋 = ∅ ) | |
| 5 | sseq0 | ⊢ ( ( 𝑥 ⊆ 𝑋 ∧ 𝑋 = ∅ ) → 𝑥 = ∅ ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ ( 𝑋 = ∅ ∧ 𝑥 ∈ 𝐽 ) ) → 𝑥 = ∅ ) |
| 7 | velsn | ⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ ( 𝑋 = ∅ ∧ 𝑥 ∈ 𝐽 ) ) → 𝑥 ∈ { ∅ } ) |
| 9 | 8 | expr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → ( 𝑥 ∈ 𝐽 → 𝑥 ∈ { ∅ } ) ) |
| 10 | 9 | ssrdv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → 𝐽 ⊆ { ∅ } ) |
| 11 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 12 | 0opn | ⊢ ( 𝐽 ∈ Top → ∅ ∈ 𝐽 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∅ ∈ 𝐽 ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → ∅ ∈ 𝐽 ) |
| 15 | 14 | snssd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → { ∅ } ⊆ 𝐽 ) |
| 16 | 10 15 | eqssd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → 𝐽 = { ∅ } ) |
| 17 | 0ex | ⊢ ∅ ∈ V | |
| 18 | 17 | ensn1 | ⊢ { ∅ } ≈ 1o |
| 19 | 16 18 | eqbrtrdi | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → 𝐽 ≈ 1o ) |
| 20 | 19 | olcd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → ( 𝐽 = ∅ ∨ 𝐽 ≈ 1o ) ) |
| 21 | sdom2en01 | ⊢ ( 𝐽 ≺ 2o ↔ ( 𝐽 = ∅ ∨ 𝐽 ≈ 1o ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → 𝐽 ≺ 2o ) |
| 23 | sdomnen | ⊢ ( 𝐽 ≺ 2o → ¬ 𝐽 ≈ 2o ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → ¬ 𝐽 ≈ 2o ) |
| 25 | 24 | ex | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ( 𝑋 = ∅ → ¬ 𝐽 ≈ 2o ) ) |
| 26 | 25 | necon2ad | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ( 𝐽 ≈ 2o → 𝑋 ≠ ∅ ) ) |
| 27 | 1 26 | mpd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → 𝑋 ≠ ∅ ) |
| 28 | 27 | necomd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ∅ ≠ 𝑋 ) |
| 29 | 13 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ∅ ∈ 𝐽 ) |
| 30 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 31 | 30 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → 𝑋 ∈ 𝐽 ) |
| 32 | en2eqpr | ⊢ ( ( 𝐽 ≈ 2o ∧ ∅ ∈ 𝐽 ∧ 𝑋 ∈ 𝐽 ) → ( ∅ ≠ 𝑋 → 𝐽 = { ∅ , 𝑋 } ) ) | |
| 33 | 1 29 31 32 | syl3anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ( ∅ ≠ 𝑋 → 𝐽 = { ∅ , 𝑋 } ) ) |
| 34 | 28 33 | mpd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → 𝐽 = { ∅ , 𝑋 } ) |
| 35 | 34 27 | jca | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) |
| 36 | simprl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) → 𝐽 = { ∅ , 𝑋 } ) | |
| 37 | simprr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) → 𝑋 ≠ ∅ ) | |
| 38 | 37 | necomd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) → ∅ ≠ 𝑋 ) |
| 39 | enpr2 | ⊢ ( ( ∅ ∈ V ∧ 𝑋 ∈ 𝐽 ∧ ∅ ≠ 𝑋 ) → { ∅ , 𝑋 } ≈ 2o ) | |
| 40 | 17 30 38 39 | mp3an2ani | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) → { ∅ , 𝑋 } ≈ 2o ) |
| 41 | 36 40 | eqbrtrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) → 𝐽 ≈ 2o ) |
| 42 | 35 41 | impbida | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ≈ 2o ↔ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) ) |