This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve topological indiscreteness. (Contributed by FL, 18-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmphdis.1 | |- X = U. J |
|
| Assertion | hmphindis | |- ( J ~= { (/) , A } -> J = { (/) , X } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmphdis.1 | |- X = U. J |
|
| 2 | dfsn2 | |- { (/) } = { (/) , (/) } |
|
| 3 | indislem | |- { (/) , ( _I ` A ) } = { (/) , A } |
|
| 4 | preq2 | |- ( ( _I ` A ) = (/) -> { (/) , ( _I ` A ) } = { (/) , (/) } ) |
|
| 5 | 4 2 | eqtr4di | |- ( ( _I ` A ) = (/) -> { (/) , ( _I ` A ) } = { (/) } ) |
| 6 | 3 5 | eqtr3id | |- ( ( _I ` A ) = (/) -> { (/) , A } = { (/) } ) |
| 7 | 6 | breq2d | |- ( ( _I ` A ) = (/) -> ( J ~= { (/) , A } <-> J ~= { (/) } ) ) |
| 8 | 7 | biimpac | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) = (/) ) -> J ~= { (/) } ) |
| 9 | hmph0 | |- ( J ~= { (/) } <-> J = { (/) } ) |
|
| 10 | 8 9 | sylib | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) = (/) ) -> J = { (/) } ) |
| 11 | 10 | unieqd | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) = (/) ) -> U. J = U. { (/) } ) |
| 12 | 0ex | |- (/) e. _V |
|
| 13 | 12 | unisn | |- U. { (/) } = (/) |
| 14 | 13 | eqcomi | |- (/) = U. { (/) } |
| 15 | 11 1 14 | 3eqtr4g | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) = (/) ) -> X = (/) ) |
| 16 | 15 | preq2d | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) = (/) ) -> { (/) , X } = { (/) , (/) } ) |
| 17 | 2 10 16 | 3eqtr4a | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) = (/) ) -> J = { (/) , X } ) |
| 18 | hmphen | |- ( J ~= { (/) , A } -> J ~~ { (/) , A } ) |
|
| 19 | necom | |- ( ( _I ` A ) =/= (/) <-> (/) =/= ( _I ` A ) ) |
|
| 20 | fvex | |- ( _I ` A ) e. _V |
|
| 21 | enpr2 | |- ( ( (/) e. _V /\ ( _I ` A ) e. _V /\ (/) =/= ( _I ` A ) ) -> { (/) , ( _I ` A ) } ~~ 2o ) |
|
| 22 | 12 20 21 | mp3an12 | |- ( (/) =/= ( _I ` A ) -> { (/) , ( _I ` A ) } ~~ 2o ) |
| 23 | 19 22 | sylbi | |- ( ( _I ` A ) =/= (/) -> { (/) , ( _I ` A ) } ~~ 2o ) |
| 24 | 23 | adantl | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) =/= (/) ) -> { (/) , ( _I ` A ) } ~~ 2o ) |
| 25 | 3 24 | eqbrtrrid | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) =/= (/) ) -> { (/) , A } ~~ 2o ) |
| 26 | entr | |- ( ( J ~~ { (/) , A } /\ { (/) , A } ~~ 2o ) -> J ~~ 2o ) |
|
| 27 | 18 25 26 | syl2an2r | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) =/= (/) ) -> J ~~ 2o ) |
| 28 | hmphtop1 | |- ( J ~= { (/) , A } -> J e. Top ) |
|
| 29 | 28 | adantr | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) =/= (/) ) -> J e. Top ) |
| 30 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 31 | 29 30 | sylib | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) =/= (/) ) -> J e. ( TopOn ` X ) ) |
| 32 | en2top | |- ( J e. ( TopOn ` X ) -> ( J ~~ 2o <-> ( J = { (/) , X } /\ X =/= (/) ) ) ) |
|
| 33 | 31 32 | syl | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) =/= (/) ) -> ( J ~~ 2o <-> ( J = { (/) , X } /\ X =/= (/) ) ) ) |
| 34 | 27 33 | mpbid | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) =/= (/) ) -> ( J = { (/) , X } /\ X =/= (/) ) ) |
| 35 | 34 | simpld | |- ( ( J ~= { (/) , A } /\ ( _I ` A ) =/= (/) ) -> J = { (/) , X } ) |
| 36 | 17 35 | pm2.61dane | |- ( J ~= { (/) , A } -> J = { (/) , X } ) |