This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmph0 | ⊢ ( 𝐽 ≃ { ∅ } ↔ 𝐽 = { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmphen | ⊢ ( 𝐽 ≃ { ∅ } → 𝐽 ≈ { ∅ } ) | |
| 2 | df1o2 | ⊢ 1o = { ∅ } | |
| 3 | 1 2 | breqtrrdi | ⊢ ( 𝐽 ≃ { ∅ } → 𝐽 ≈ 1o ) |
| 4 | hmphtop1 | ⊢ ( 𝐽 ≃ { ∅ } → 𝐽 ∈ Top ) | |
| 5 | en1top | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ≈ 1o ↔ 𝐽 = { ∅ } ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐽 ≃ { ∅ } → ( 𝐽 ≈ 1o ↔ 𝐽 = { ∅ } ) ) |
| 7 | 3 6 | mpbid | ⊢ ( 𝐽 ≃ { ∅ } → 𝐽 = { ∅ } ) |
| 8 | id | ⊢ ( 𝐽 = { ∅ } → 𝐽 = { ∅ } ) | |
| 9 | sn0top | ⊢ { ∅ } ∈ Top | |
| 10 | hmphref | ⊢ ( { ∅ } ∈ Top → { ∅ } ≃ { ∅ } ) | |
| 11 | 9 10 | ax-mp | ⊢ { ∅ } ≃ { ∅ } |
| 12 | 8 11 | eqbrtrdi | ⊢ ( 𝐽 = { ∅ } → 𝐽 ≃ { ∅ } ) |
| 13 | 7 12 | impbii | ⊢ ( 𝐽 ≃ { ∅ } ↔ 𝐽 = { ∅ } ) |