This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve the cardinality of the topologies. (Contributed by FL, 1-Jun-2008) (Revised by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmphen | ⊢ ( 𝐽 ≃ 𝐾 → 𝐽 ≈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph | ⊢ ( 𝐽 ≃ 𝐾 ↔ ( 𝐽 Homeo 𝐾 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ) | |
| 3 | hmeocn | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 4 | cntop1 | ⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐽 ∈ Top ) |
| 6 | cntop2 | ⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 7 | 3 6 | syl | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 ∈ Top ) |
| 8 | eqid | ⊢ ( 𝑥 ∈ 𝐽 ↦ ( 𝑓 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐽 ↦ ( 𝑓 “ 𝑥 ) ) | |
| 9 | 8 | hmeoimaf1o | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝑥 ∈ 𝐽 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐽 –1-1-onto→ 𝐾 ) |
| 10 | f1oen2g | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ( 𝑥 ∈ 𝐽 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐽 –1-1-onto→ 𝐾 ) → 𝐽 ≈ 𝐾 ) | |
| 11 | 5 7 9 10 | syl3anc | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐽 ≈ 𝐾 ) |
| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐽 ≈ 𝐾 ) |
| 13 | 2 12 | sylbi | ⊢ ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ → 𝐽 ≈ 𝐾 ) |
| 14 | 1 13 | sylbi | ⊢ ( 𝐽 ≃ 𝐾 → 𝐽 ≈ 𝐾 ) |