This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hi2eq | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ) | |
| 2 | his2sub | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) | |
| 3 | 1 2 | mpd3an3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 4 | 3 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = 0 ↔ ( ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) = 0 ) ) |
| 5 | his6 | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = 0 ↔ ( 𝐴 −ℎ 𝐵 ) = 0ℎ ) ) | |
| 6 | 1 5 | syl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = 0 ↔ ( 𝐴 −ℎ 𝐵 ) = 0ℎ ) ) |
| 7 | 4 6 | bitr3d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) = 0 ↔ ( 𝐴 −ℎ 𝐵 ) = 0ℎ ) ) |
| 8 | hicl | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ) → ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) ∈ ℂ ) | |
| 9 | 1 8 | syldan | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) ∈ ℂ ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → 𝐵 ∈ ℋ ) | |
| 11 | hicl | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ∈ ℂ ) | |
| 12 | 10 1 11 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ∈ ℂ ) |
| 13 | 9 12 | subeq0ad | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) = 0 ↔ ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 14 | hvsubeq0 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = 𝐵 ) ) | |
| 15 | 7 13 14 | 3bitr3d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |