This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hi2eq | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H ) |
|
| 2 | his2sub | |- ( ( A e. ~H /\ B e. ~H /\ ( A -h B ) e. ~H ) -> ( ( A -h B ) .ih ( A -h B ) ) = ( ( A .ih ( A -h B ) ) - ( B .ih ( A -h B ) ) ) ) |
|
| 3 | 1 2 | mpd3an3 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h B ) .ih ( A -h B ) ) = ( ( A .ih ( A -h B ) ) - ( B .ih ( A -h B ) ) ) ) |
| 4 | 3 | eqeq1d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( A -h B ) .ih ( A -h B ) ) = 0 <-> ( ( A .ih ( A -h B ) ) - ( B .ih ( A -h B ) ) ) = 0 ) ) |
| 5 | his6 | |- ( ( A -h B ) e. ~H -> ( ( ( A -h B ) .ih ( A -h B ) ) = 0 <-> ( A -h B ) = 0h ) ) |
|
| 6 | 1 5 | syl | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( A -h B ) .ih ( A -h B ) ) = 0 <-> ( A -h B ) = 0h ) ) |
| 7 | 4 6 | bitr3d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( A .ih ( A -h B ) ) - ( B .ih ( A -h B ) ) ) = 0 <-> ( A -h B ) = 0h ) ) |
| 8 | hicl | |- ( ( A e. ~H /\ ( A -h B ) e. ~H ) -> ( A .ih ( A -h B ) ) e. CC ) |
|
| 9 | 1 8 | syldan | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih ( A -h B ) ) e. CC ) |
| 10 | simpr | |- ( ( A e. ~H /\ B e. ~H ) -> B e. ~H ) |
|
| 11 | hicl | |- ( ( B e. ~H /\ ( A -h B ) e. ~H ) -> ( B .ih ( A -h B ) ) e. CC ) |
|
| 12 | 10 1 11 | syl2anc | |- ( ( A e. ~H /\ B e. ~H ) -> ( B .ih ( A -h B ) ) e. CC ) |
| 13 | 9 12 | subeq0ad | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( A .ih ( A -h B ) ) - ( B .ih ( A -h B ) ) ) = 0 <-> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) ) |
| 14 | hvsubeq0 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h B ) = 0h <-> A = B ) ) |
|
| 15 | 7 13 14 | 3bitr3d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) <-> A = B ) ) |