This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " H is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsst.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhsst.2 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | ||
| Assertion | hhsssh | ⊢ ( 𝐻 ∈ Sℋ ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsst.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhsst.2 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 3 | 1 2 | hhsst | ⊢ ( 𝐻 ∈ Sℋ → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 4 | shss | ⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ ) | |
| 5 | 3 4 | jca | ⊢ ( 𝐻 ∈ Sℋ → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) ) |
| 6 | eleq1 | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( 𝐻 ∈ Sℋ ↔ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ∈ Sℋ ) ) | |
| 7 | eqid | ⊢ 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 = 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 | |
| 8 | xpeq1 | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( 𝐻 × 𝐻 ) = ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × 𝐻 ) ) | |
| 9 | xpeq2 | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × 𝐻 ) = ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) | |
| 10 | 8 9 | eqtrd | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( 𝐻 × 𝐻 ) = ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) |
| 11 | 10 | reseq2d | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) ) |
| 12 | xpeq2 | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( ℂ × 𝐻 ) = ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) | |
| 13 | 12 | reseq2d | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( ·ℎ ↾ ( ℂ × 𝐻 ) ) = ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) ) |
| 14 | 11 13 | opeq12d | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 = 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 ) |
| 15 | reseq2 | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( normℎ ↾ 𝐻 ) = ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) | |
| 16 | 14 15 | opeq12d | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 = 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 ) |
| 17 | 2 16 | eqtrid | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → 𝑊 = 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 ) |
| 18 | 17 | eleq1d | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ↔ 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 ∈ ( SubSp ‘ 𝑈 ) ) ) |
| 19 | sseq1 | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( 𝐻 ⊆ ℋ ↔ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ⊆ ℋ ) ) | |
| 20 | 18 19 | anbi12d | ⊢ ( 𝐻 = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) ↔ ( 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 ∈ ( SubSp ‘ 𝑈 ) ∧ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ⊆ ℋ ) ) ) |
| 21 | xpeq1 | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( ℋ × ℋ ) = ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × ℋ ) ) | |
| 22 | xpeq2 | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × ℋ ) = ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) | |
| 23 | 21 22 | eqtrd | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( ℋ × ℋ ) = ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) |
| 24 | 23 | reseq2d | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( +ℎ ↾ ( ℋ × ℋ ) ) = ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) ) |
| 25 | xpeq2 | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( ℂ × ℋ ) = ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) | |
| 26 | 25 | reseq2d | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( ·ℎ ↾ ( ℂ × ℋ ) ) = ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) ) |
| 27 | 24 26 | opeq12d | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → 〈 ( +ℎ ↾ ( ℋ × ℋ ) ) , ( ·ℎ ↾ ( ℂ × ℋ ) ) 〉 = 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 ) |
| 28 | reseq2 | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( normℎ ↾ ℋ ) = ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) | |
| 29 | 27 28 | opeq12d | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → 〈 〈 ( +ℎ ↾ ( ℋ × ℋ ) ) , ( ·ℎ ↾ ( ℂ × ℋ ) ) 〉 , ( normℎ ↾ ℋ ) 〉 = 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 ) |
| 30 | 29 | eleq1d | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( 〈 〈 ( +ℎ ↾ ( ℋ × ℋ ) ) , ( ·ℎ ↾ ( ℂ × ℋ ) ) 〉 , ( normℎ ↾ ℋ ) 〉 ∈ ( SubSp ‘ 𝑈 ) ↔ 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 ∈ ( SubSp ‘ 𝑈 ) ) ) |
| 31 | sseq1 | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( ℋ ⊆ ℋ ↔ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ⊆ ℋ ) ) | |
| 32 | 30 31 | anbi12d | ⊢ ( ℋ = if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) → ( ( 〈 〈 ( +ℎ ↾ ( ℋ × ℋ ) ) , ( ·ℎ ↾ ( ℂ × ℋ ) ) 〉 , ( normℎ ↾ ℋ ) 〉 ∈ ( SubSp ‘ 𝑈 ) ∧ ℋ ⊆ ℋ ) ↔ ( 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 ∈ ( SubSp ‘ 𝑈 ) ∧ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ⊆ ℋ ) ) ) |
| 33 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 34 | ffn | ⊢ ( +ℎ : ( ℋ × ℋ ) ⟶ ℋ → +ℎ Fn ( ℋ × ℋ ) ) | |
| 35 | fnresdm | ⊢ ( +ℎ Fn ( ℋ × ℋ ) → ( +ℎ ↾ ( ℋ × ℋ ) ) = +ℎ ) | |
| 36 | 33 34 35 | mp2b | ⊢ ( +ℎ ↾ ( ℋ × ℋ ) ) = +ℎ |
| 37 | ax-hfvmul | ⊢ ·ℎ : ( ℂ × ℋ ) ⟶ ℋ | |
| 38 | ffn | ⊢ ( ·ℎ : ( ℂ × ℋ ) ⟶ ℋ → ·ℎ Fn ( ℂ × ℋ ) ) | |
| 39 | fnresdm | ⊢ ( ·ℎ Fn ( ℂ × ℋ ) → ( ·ℎ ↾ ( ℂ × ℋ ) ) = ·ℎ ) | |
| 40 | 37 38 39 | mp2b | ⊢ ( ·ℎ ↾ ( ℂ × ℋ ) ) = ·ℎ |
| 41 | 36 40 | opeq12i | ⊢ 〈 ( +ℎ ↾ ( ℋ × ℋ ) ) , ( ·ℎ ↾ ( ℂ × ℋ ) ) 〉 = 〈 +ℎ , ·ℎ 〉 |
| 42 | normf | ⊢ normℎ : ℋ ⟶ ℝ | |
| 43 | ffn | ⊢ ( normℎ : ℋ ⟶ ℝ → normℎ Fn ℋ ) | |
| 44 | fnresdm | ⊢ ( normℎ Fn ℋ → ( normℎ ↾ ℋ ) = normℎ ) | |
| 45 | 42 43 44 | mp2b | ⊢ ( normℎ ↾ ℋ ) = normℎ |
| 46 | 41 45 | opeq12i | ⊢ 〈 〈 ( +ℎ ↾ ( ℋ × ℋ ) ) , ( ·ℎ ↾ ( ℂ × ℋ ) ) 〉 , ( normℎ ↾ ℋ ) 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
| 47 | 46 1 | eqtr4i | ⊢ 〈 〈 ( +ℎ ↾ ( ℋ × ℋ ) ) , ( ·ℎ ↾ ( ℂ × ℋ ) ) 〉 , ( normℎ ↾ ℋ ) 〉 = 𝑈 |
| 48 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| 49 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 50 | 49 | sspid | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 ∈ ( SubSp ‘ 𝑈 ) ) |
| 51 | 48 50 | ax-mp | ⊢ 𝑈 ∈ ( SubSp ‘ 𝑈 ) |
| 52 | 47 51 | eqeltri | ⊢ 〈 〈 ( +ℎ ↾ ( ℋ × ℋ ) ) , ( ·ℎ ↾ ( ℂ × ℋ ) ) 〉 , ( normℎ ↾ ℋ ) 〉 ∈ ( SubSp ‘ 𝑈 ) |
| 53 | ssid | ⊢ ℋ ⊆ ℋ | |
| 54 | 52 53 | pm3.2i | ⊢ ( 〈 〈 ( +ℎ ↾ ( ℋ × ℋ ) ) , ( ·ℎ ↾ ( ℂ × ℋ ) ) 〉 , ( normℎ ↾ ℋ ) 〉 ∈ ( SubSp ‘ 𝑈 ) ∧ ℋ ⊆ ℋ ) |
| 55 | 20 32 54 | elimhyp | ⊢ ( 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 ∈ ( SubSp ‘ 𝑈 ) ∧ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ⊆ ℋ ) |
| 56 | 55 | simpli | ⊢ 〈 〈 ( +ℎ ↾ ( if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) ) 〉 , ( normℎ ↾ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ) 〉 ∈ ( SubSp ‘ 𝑈 ) |
| 57 | 55 | simpri | ⊢ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ⊆ ℋ |
| 58 | 1 7 56 57 | hhshsslem2 | ⊢ if ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) , 𝐻 , ℋ ) ∈ Sℋ |
| 59 | 6 58 | dedth | ⊢ ( ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) → 𝐻 ∈ Sℋ ) |
| 60 | 5 59 | impbii | ⊢ ( 𝐻 ∈ Sℋ ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝐻 ⊆ ℋ ) ) |