This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sspid.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| Assertion | sspid | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspid.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 2 | ssid | ⊢ ( +𝑣 ‘ 𝑈 ) ⊆ ( +𝑣 ‘ 𝑈 ) | |
| 3 | ssid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ssid | ⊢ ( normCV ‘ 𝑈 ) ⊆ ( normCV ‘ 𝑈 ) | |
| 5 | 2 3 4 | 3pm3.2i | ⊢ ( ( +𝑣 ‘ 𝑈 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑈 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑈 ) ⊆ ( normCV ‘ 𝑈 ) ) |
| 6 | 5 | jctr | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑈 ∈ NrmCVec ∧ ( ( +𝑣 ‘ 𝑈 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑈 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑈 ) ⊆ ( normCV ‘ 𝑈 ) ) ) ) |
| 7 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 8 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 9 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 10 | 7 7 8 8 9 9 1 | isssp | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ NrmCVec ∧ ( ( +𝑣 ‘ 𝑈 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑈 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑈 ) ⊆ ( normCV ‘ 𝑈 ) ) ) ) ) |
| 11 | 6 10 | mpbird | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻 ) |