This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspz.z | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| sspz.q | ⊢ 𝑄 = ( 0vec ‘ 𝑊 ) | ||
| sspz.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| Assertion | sspz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑄 = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspz.z | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 2 | sspz.q | ⊢ 𝑄 = ( 0vec ‘ 𝑊 ) | |
| 3 | sspz.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 4 | 3 | sspnv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 5 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 6 | 5 2 | nvzcl | ⊢ ( 𝑊 ∈ NrmCVec → 𝑄 ∈ ( BaseSet ‘ 𝑊 ) ) |
| 7 | 6 6 | jca | ⊢ ( 𝑊 ∈ NrmCVec → ( 𝑄 ∈ ( BaseSet ‘ 𝑊 ) ∧ 𝑄 ∈ ( BaseSet ‘ 𝑊 ) ) ) |
| 8 | 4 7 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑄 ∈ ( BaseSet ‘ 𝑊 ) ∧ 𝑄 ∈ ( BaseSet ‘ 𝑊 ) ) ) |
| 9 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
| 10 | eqid | ⊢ ( −𝑣 ‘ 𝑊 ) = ( −𝑣 ‘ 𝑊 ) | |
| 11 | 5 9 10 3 | sspmval | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ ( BaseSet ‘ 𝑊 ) ∧ 𝑄 ∈ ( BaseSet ‘ 𝑊 ) ) ) → ( 𝑄 ( −𝑣 ‘ 𝑊 ) 𝑄 ) = ( 𝑄 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) |
| 12 | 8 11 | mpdan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑄 ( −𝑣 ‘ 𝑊 ) 𝑄 ) = ( 𝑄 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) |
| 13 | 5 10 2 | nvmid | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑄 ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑄 ( −𝑣 ‘ 𝑊 ) 𝑄 ) = 𝑄 ) |
| 14 | 4 6 13 | syl2anc2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑄 ( −𝑣 ‘ 𝑊 ) 𝑄 ) = 𝑄 ) |
| 15 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 16 | 15 5 3 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( BaseSet ‘ 𝑊 ) ⊆ ( BaseSet ‘ 𝑈 ) ) |
| 17 | 4 6 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑄 ∈ ( BaseSet ‘ 𝑊 ) ) |
| 18 | 16 17 | sseldd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑄 ∈ ( BaseSet ‘ 𝑈 ) ) |
| 19 | 15 9 1 | nvmid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑄 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑄 ( −𝑣 ‘ 𝑈 ) 𝑄 ) = 𝑍 ) |
| 20 | 18 19 | syldan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑄 ( −𝑣 ‘ 𝑈 ) 𝑄 ) = 𝑍 ) |
| 21 | 12 14 20 | 3eqtr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑄 = 𝑍 ) |