This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhnmo.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhblo.2 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑈 ) | ||
| Assertion | hhbloi | ⊢ BndLinOp = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnmo.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhblo.2 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑈 ) | |
| 3 | df-bdop | ⊢ BndLinOp = { 𝑥 ∈ LinOp ∣ ( normop ‘ 𝑥 ) < +∞ } | |
| 4 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| 5 | eqid | ⊢ ( 𝑈 normOpOLD 𝑈 ) = ( 𝑈 normOpOLD 𝑈 ) | |
| 6 | 1 5 | hhnmoi | ⊢ normop = ( 𝑈 normOpOLD 𝑈 ) |
| 7 | eqid | ⊢ ( 𝑈 LnOp 𝑈 ) = ( 𝑈 LnOp 𝑈 ) | |
| 8 | 1 7 | hhlnoi | ⊢ LinOp = ( 𝑈 LnOp 𝑈 ) |
| 9 | 6 8 2 | bloval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝐵 = { 𝑥 ∈ LinOp ∣ ( normop ‘ 𝑥 ) < +∞ } ) |
| 10 | 4 4 9 | mp2an | ⊢ 𝐵 = { 𝑥 ∈ LinOp ∣ ( normop ‘ 𝑥 ) < +∞ } |
| 11 | 3 10 | eqtr4i | ⊢ BndLinOp = 𝐵 |