This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhnmo.1 | |- U = <. <. +h , .h >. , normh >. |
|
| hhblo.2 | |- B = ( U BLnOp U ) |
||
| Assertion | hhbloi | |- BndLinOp = B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnmo.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hhblo.2 | |- B = ( U BLnOp U ) |
|
| 3 | df-bdop | |- BndLinOp = { x e. LinOp | ( normop ` x ) < +oo } |
|
| 4 | 1 | hhnv | |- U e. NrmCVec |
| 5 | eqid | |- ( U normOpOLD U ) = ( U normOpOLD U ) |
|
| 6 | 1 5 | hhnmoi | |- normop = ( U normOpOLD U ) |
| 7 | eqid | |- ( U LnOp U ) = ( U LnOp U ) |
|
| 8 | 1 7 | hhlnoi | |- LinOp = ( U LnOp U ) |
| 9 | 6 8 2 | bloval | |- ( ( U e. NrmCVec /\ U e. NrmCVec ) -> B = { x e. LinOp | ( normop ` x ) < +oo } ) |
| 10 | 4 4 9 | mp2an | |- B = { x e. LinOp | ( normop ` x ) < +oo } |
| 11 | 3 10 | eqtr4i | |- BndLinOp = B |