This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero operator in Hilbert space. (Contributed by NM, 7-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhnmo.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hh0o.2 | ⊢ 𝑍 = ( 𝑈 0op 𝑈 ) | ||
| Assertion | hh0oi | ⊢ 0hop = 𝑍 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnmo.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hh0o.2 | ⊢ 𝑍 = ( 𝑈 0op 𝑈 ) | |
| 3 | 1 | hhba | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
| 4 | df-ch0 | ⊢ 0ℋ = { 0ℎ } | |
| 5 | 1 | hh0v | ⊢ 0ℎ = ( 0vec ‘ 𝑈 ) |
| 6 | 5 | sneqi | ⊢ { 0ℎ } = { ( 0vec ‘ 𝑈 ) } |
| 7 | 4 6 | eqtri | ⊢ 0ℋ = { ( 0vec ‘ 𝑈 ) } |
| 8 | 3 7 | xpeq12i | ⊢ ( ℋ × 0ℋ ) = ( ( BaseSet ‘ 𝑈 ) × { ( 0vec ‘ 𝑈 ) } ) |
| 9 | df0op2 | ⊢ 0hop = ( ℋ × 0ℋ ) | |
| 10 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| 11 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 12 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 13 | 11 12 2 | 0ofval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝑍 = ( ( BaseSet ‘ 𝑈 ) × { ( 0vec ‘ 𝑈 ) } ) ) |
| 14 | 10 10 13 | mp2an | ⊢ 𝑍 = ( ( BaseSet ‘ 𝑈 ) × { ( 0vec ‘ 𝑈 ) } ) |
| 15 | 8 9 14 | 3eqtr4i | ⊢ 0hop = 𝑍 |