This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhlno.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhlno.2 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑈 ) | ||
| Assertion | hhlnoi | ⊢ LinOp = 𝐿 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhlno.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhlno.2 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑈 ) | |
| 3 | df-lnop | ⊢ LinOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } | |
| 4 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| 5 | 1 | hhba | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
| 6 | 1 | hhva | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) |
| 7 | 1 | hhsm | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) |
| 8 | 5 5 6 6 7 7 2 | lnoval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝐿 = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } ) |
| 9 | 4 4 8 | mp2an | ⊢ 𝐿 = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } |
| 10 | 3 9 | eqtr4i | ⊢ LinOp = 𝐿 |