This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhnmo.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhnmo.2 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑈 ) | ||
| Assertion | hhnmoi | ⊢ normop = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnmo.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhnmo.2 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑈 ) | |
| 3 | df-nmop | ⊢ normop = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 4 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| 5 | 1 | hhba | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
| 6 | 1 | hhnm | ⊢ normℎ = ( normCV ‘ 𝑈 ) |
| 7 | 5 5 6 6 2 | nmoofval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝑁 = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) ) |
| 8 | 4 4 7 | mp2an | ⊢ 𝑁 = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 9 | 3 8 | eqtr4i | ⊢ normop = 𝑁 |