This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bloval.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| bloval.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| bloval.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| Assertion | bloval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐵 = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bloval.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 2 | bloval.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 3 | bloval.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 4 | oveq1 | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 LnOp 𝑤 ) = ( 𝑈 LnOp 𝑤 ) ) | |
| 5 | oveq1 | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 normOpOLD 𝑤 ) = ( 𝑈 normOpOLD 𝑤 ) ) | |
| 6 | 5 | fveq1d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) = ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) ) |
| 7 | 6 | breq1d | ⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ↔ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ) ) |
| 8 | 4 7 | rabeqbidv | ⊢ ( 𝑢 = 𝑈 → { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } = { 𝑡 ∈ ( 𝑈 LnOp 𝑤 ) ∣ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) |
| 9 | oveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝑈 LnOp 𝑤 ) = ( 𝑈 LnOp 𝑊 ) ) | |
| 10 | 9 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( 𝑈 LnOp 𝑤 ) = 𝐿 ) |
| 11 | oveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝑈 normOpOLD 𝑤 ) = ( 𝑈 normOpOLD 𝑊 ) ) | |
| 12 | 11 1 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( 𝑈 normOpOLD 𝑤 ) = 𝑁 ) |
| 13 | 12 | fveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) = ( 𝑁 ‘ 𝑡 ) ) |
| 14 | 13 | breq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ↔ ( 𝑁 ‘ 𝑡 ) < +∞ ) ) |
| 15 | 10 14 | rabeqbidv | ⊢ ( 𝑤 = 𝑊 → { 𝑡 ∈ ( 𝑈 LnOp 𝑤 ) ∣ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |
| 16 | df-blo | ⊢ BLnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) | |
| 17 | 2 | ovexi | ⊢ 𝐿 ∈ V |
| 18 | 17 | rabex | ⊢ { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ∈ V |
| 19 | 8 15 16 18 | ovmpo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 BLnOp 𝑊 ) = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |
| 20 | 3 19 | eqtrid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐵 = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |