This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of bounded linear Hilbert space operators. (See df-hosum for definition of operator.) (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bdop | ⊢ BndLinOp = { 𝑡 ∈ LinOp ∣ ( normop ‘ 𝑡 ) < +∞ } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cbo | ⊢ BndLinOp | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | clo | ⊢ LinOp | |
| 3 | cnop | ⊢ normop | |
| 4 | 1 | cv | ⊢ 𝑡 |
| 5 | 4 3 | cfv | ⊢ ( normop ‘ 𝑡 ) |
| 6 | clt | ⊢ < | |
| 7 | cpnf | ⊢ +∞ | |
| 8 | 5 7 6 | wbr | ⊢ ( normop ‘ 𝑡 ) < +∞ |
| 9 | 8 1 2 | crab | ⊢ { 𝑡 ∈ LinOp ∣ ( normop ‘ 𝑡 ) < +∞ } |
| 10 | 0 9 | wceq | ⊢ BndLinOp = { 𝑡 ∈ LinOp ∣ ( normop ‘ 𝑡 ) < +∞ } |