This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real addition of the size of an infinite set with the size of an arbitrary set yields plus infinity. (Contributed by Alexander van der Vekens, 20-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashinfxadd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnn0pnf | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) ) | |
| 2 | df-nel | ⊢ ( ( ♯ ‘ 𝐴 ) ∉ ℕ0 ↔ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 3 | 2 | anbi2i | ⊢ ( ( ( ( ♯ ‘ 𝐴 ) = +∞ ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) ↔ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
| 4 | pm5.61 | ⊢ ( ( ( ( ♯ ‘ 𝐴 ) = +∞ ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ↔ ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) | |
| 5 | 3 4 | sylbb | ⊢ ( ( ( ( ♯ ‘ 𝐴 ) = +∞ ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
| 6 | 5 | ex | ⊢ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) ∉ ℕ0 → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) ) |
| 7 | 6 | orcoms | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) → ( ( ♯ ‘ 𝐴 ) ∉ ℕ0 → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) ) |
| 8 | 1 7 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∉ ℕ0 → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
| 11 | oveq1 | ⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = ( +∞ +𝑒 ( ♯ ‘ 𝐵 ) ) ) | |
| 12 | hashxrcl | ⊢ ( 𝐵 ∈ 𝑊 → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) | |
| 13 | hashnemnf | ⊢ ( 𝐵 ∈ 𝑊 → ( ♯ ‘ 𝐵 ) ≠ -∞ ) | |
| 14 | 12 13 | jca | ⊢ ( 𝐵 ∈ 𝑊 → ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ≠ -∞ ) ) |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ≠ -∞ ) ) |
| 16 | xaddpnf2 | ⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ≠ -∞ ) → ( +∞ +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( +∞ +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
| 18 | 11 17 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) ∧ ( ♯ ‘ 𝐴 ) = +∞ ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
| 19 | 18 | expcom | ⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) ) |
| 21 | 10 20 | mpcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |