This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of a set with a disjoint singleton is the extended real addition of the size of the set and 1, analogous to hashunsng . (Contributed by BTernaryTau, 9-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashunsngx | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝐵 ∈ 𝐴 → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) | |
| 2 | snfi | ⊢ { 𝐵 } ∈ Fin | |
| 3 | hashunx | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝐵 } ∈ Fin ∧ ( 𝐴 ∩ { 𝐵 } ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ { 𝐵 } ) ) ) | |
| 4 | 2 3 | mp3an2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐴 ∩ { 𝐵 } ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ { 𝐵 } ) ) ) |
| 5 | 1 4 | sylan2br | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ { 𝐵 } ) ) ) |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ { 𝐵 } ) ) ) |
| 7 | hashsng | ⊢ ( 𝐵 ∈ 𝑊 → ( ♯ ‘ { 𝐵 } ) = 1 ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ { 𝐵 } ) = 1 ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) |
| 11 | 10 | 3expia | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝐵 ∈ 𝐴 → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) |