This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashunsnggt | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0 ) ∧ ¬ 𝐵 ∈ 𝐴 ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 + 1 ) < ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 2 | 1 | rexrd | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ* ) |
| 3 | hashxrcl | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) | |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | xltadd1 | ⊢ ( ( 𝑁 ∈ ℝ* ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 +𝑒 1 ) < ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) | |
| 6 | 4 5 | mp3an3 | ⊢ ( ( 𝑁 ∈ ℝ* ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ* ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 +𝑒 1 ) < ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) |
| 7 | 2 3 6 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 +𝑒 1 ) < ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 +𝑒 1 ) < ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) |
| 9 | rexadd | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑁 +𝑒 1 ) = ( 𝑁 + 1 ) ) | |
| 10 | 4 9 | mpan2 | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 +𝑒 1 ) = ( 𝑁 + 1 ) ) |
| 11 | 1 10 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 +𝑒 1 ) = ( 𝑁 + 1 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 +𝑒 1 ) = ( 𝑁 + 1 ) ) |
| 13 | 12 | breq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 +𝑒 1 ) < ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ↔ ( 𝑁 + 1 ) < ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) |
| 14 | 8 13 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 + 1 ) < ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 + 1 ) < ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0 ) ∧ ¬ 𝐵 ∈ 𝐴 ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 + 1 ) < ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) |
| 17 | hashunsngx | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝐵 ∈ 𝐴 → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) | |
| 18 | 17 | 3impia | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) |
| 19 | 18 | eqcomd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) = ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 20 | 19 | 3expa | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) = ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 21 | 20 | 3adantl3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0 ) ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) = ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 22 | 21 | breq2d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0 ) ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ( 𝑁 + 1 ) < ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ↔ ( 𝑁 + 1 ) < ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
| 23 | 16 22 | bitrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0 ) ∧ ¬ 𝐵 ∈ 𝐴 ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 + 1 ) < ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |