This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of a set with a disjoint singleton is the extended real addition of the size of the set and 1, analogous to hashunsng . (Contributed by BTernaryTau, 9-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashunsngx | |- ( ( A e. V /\ B e. W ) -> ( -. B e. A -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsn | |- ( ( A i^i { B } ) = (/) <-> -. B e. A ) |
|
| 2 | snfi | |- { B } e. Fin |
|
| 3 | hashunx | |- ( ( A e. V /\ { B } e. Fin /\ ( A i^i { B } ) = (/) ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e ( # ` { B } ) ) ) |
|
| 4 | 2 3 | mp3an2 | |- ( ( A e. V /\ ( A i^i { B } ) = (/) ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e ( # ` { B } ) ) ) |
| 5 | 1 4 | sylan2br | |- ( ( A e. V /\ -. B e. A ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e ( # ` { B } ) ) ) |
| 6 | 5 | 3adant2 | |- ( ( A e. V /\ B e. W /\ -. B e. A ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e ( # ` { B } ) ) ) |
| 7 | hashsng | |- ( B e. W -> ( # ` { B } ) = 1 ) |
|
| 8 | 7 | 3ad2ant2 | |- ( ( A e. V /\ B e. W /\ -. B e. A ) -> ( # ` { B } ) = 1 ) |
| 9 | 8 | oveq2d | |- ( ( A e. V /\ B e. W /\ -. B e. A ) -> ( ( # ` A ) +e ( # ` { B } ) ) = ( ( # ` A ) +e 1 ) ) |
| 10 | 6 9 | eqtrd | |- ( ( A e. V /\ B e. W /\ -. B e. A ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e 1 ) ) |
| 11 | 10 | 3expia | |- ( ( A e. V /\ B e. W ) -> ( -. B e. A -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e 1 ) ) ) |