This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashun3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diffi | ⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∖ 𝐴 ) ∈ Fin ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐵 ∖ 𝐴 ) ∈ Fin ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) | |
| 4 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 5 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( 𝐴 ∩ 𝐵 ) ∈ Fin ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∩ 𝐵 ) ∈ Fin ) |
| 7 | sslin | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) ) | |
| 8 | 4 7 | ax-mp | ⊢ ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) |
| 9 | disjdifr | ⊢ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) = ∅ | |
| 10 | sseq0 | ⊢ ( ( ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) ∧ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ ) | |
| 11 | 8 9 10 | mp2an | ⊢ ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ |
| 12 | 11 | a1i | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ ) |
| 13 | hashun | ⊢ ( ( ( 𝐵 ∖ 𝐴 ) ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) ∈ Fin ∧ ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ ) → ( ♯ ‘ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) + ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) | |
| 14 | 2 6 12 13 | syl3anc | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) + ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 15 | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) | |
| 16 | 15 | uneq2i | ⊢ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐵 ∩ 𝐴 ) ) |
| 17 | uncom | ⊢ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐵 ∩ 𝐴 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) | |
| 18 | inundif | ⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 | |
| 19 | 16 17 18 | 3eqtri | ⊢ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) = 𝐵 |
| 20 | 19 | a1i | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) = 𝐵 ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
| 22 | 14 21 | eqtr3d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) + ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
| 23 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 25 | 24 | nn0cnd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 26 | hashcl | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ Fin → ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℕ0 ) | |
| 27 | 6 26 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℕ0 ) |
| 28 | 27 | nn0cnd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
| 29 | hashcl | ⊢ ( ( 𝐵 ∖ 𝐴 ) ∈ Fin → ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ℕ0 ) | |
| 30 | 2 29 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ℕ0 ) |
| 31 | 30 | nn0cnd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ℂ ) |
| 32 | 25 28 31 | subadd2d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ↔ ( ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) + ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ♯ ‘ 𝐵 ) ) ) |
| 33 | 22 32 | mpbird | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) |
| 34 | 33 | oveq2d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 35 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 36 | 35 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 37 | 36 | nn0cnd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 38 | 37 25 28 | addsubassd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 39 | undif2 | ⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) | |
| 40 | 39 | fveq2i | ⊢ ( ♯ ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 41 | disjdif | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ | |
| 42 | 41 | a1i | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) |
| 43 | hashun | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∖ 𝐴 ) ∈ Fin ∧ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) | |
| 44 | 3 2 42 43 | syl3anc | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 45 | 40 44 | eqtr3id | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 46 | 34 38 45 | 3eqtr4rd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |