This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashun3 | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) = ( ( ( # ` A ) + ( # ` B ) ) - ( # ` ( A i^i B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diffi | |- ( B e. Fin -> ( B \ A ) e. Fin ) |
|
| 2 | 1 | adantl | |- ( ( A e. Fin /\ B e. Fin ) -> ( B \ A ) e. Fin ) |
| 3 | simpl | |- ( ( A e. Fin /\ B e. Fin ) -> A e. Fin ) |
|
| 4 | inss1 | |- ( A i^i B ) C_ A |
|
| 5 | ssfi | |- ( ( A e. Fin /\ ( A i^i B ) C_ A ) -> ( A i^i B ) e. Fin ) |
|
| 6 | 3 4 5 | sylancl | |- ( ( A e. Fin /\ B e. Fin ) -> ( A i^i B ) e. Fin ) |
| 7 | sslin | |- ( ( A i^i B ) C_ A -> ( ( B \ A ) i^i ( A i^i B ) ) C_ ( ( B \ A ) i^i A ) ) |
|
| 8 | 4 7 | ax-mp | |- ( ( B \ A ) i^i ( A i^i B ) ) C_ ( ( B \ A ) i^i A ) |
| 9 | disjdifr | |- ( ( B \ A ) i^i A ) = (/) |
|
| 10 | sseq0 | |- ( ( ( ( B \ A ) i^i ( A i^i B ) ) C_ ( ( B \ A ) i^i A ) /\ ( ( B \ A ) i^i A ) = (/) ) -> ( ( B \ A ) i^i ( A i^i B ) ) = (/) ) |
|
| 11 | 8 9 10 | mp2an | |- ( ( B \ A ) i^i ( A i^i B ) ) = (/) |
| 12 | 11 | a1i | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( B \ A ) i^i ( A i^i B ) ) = (/) ) |
| 13 | hashun | |- ( ( ( B \ A ) e. Fin /\ ( A i^i B ) e. Fin /\ ( ( B \ A ) i^i ( A i^i B ) ) = (/) ) -> ( # ` ( ( B \ A ) u. ( A i^i B ) ) ) = ( ( # ` ( B \ A ) ) + ( # ` ( A i^i B ) ) ) ) |
|
| 14 | 2 6 12 13 | syl3anc | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( ( B \ A ) u. ( A i^i B ) ) ) = ( ( # ` ( B \ A ) ) + ( # ` ( A i^i B ) ) ) ) |
| 15 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 16 | 15 | uneq2i | |- ( ( B \ A ) u. ( A i^i B ) ) = ( ( B \ A ) u. ( B i^i A ) ) |
| 17 | uncom | |- ( ( B \ A ) u. ( B i^i A ) ) = ( ( B i^i A ) u. ( B \ A ) ) |
|
| 18 | inundif | |- ( ( B i^i A ) u. ( B \ A ) ) = B |
|
| 19 | 16 17 18 | 3eqtri | |- ( ( B \ A ) u. ( A i^i B ) ) = B |
| 20 | 19 | a1i | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( B \ A ) u. ( A i^i B ) ) = B ) |
| 21 | 20 | fveq2d | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( ( B \ A ) u. ( A i^i B ) ) ) = ( # ` B ) ) |
| 22 | 14 21 | eqtr3d | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` ( B \ A ) ) + ( # ` ( A i^i B ) ) ) = ( # ` B ) ) |
| 23 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 24 | 23 | adantl | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` B ) e. NN0 ) |
| 25 | 24 | nn0cnd | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` B ) e. CC ) |
| 26 | hashcl | |- ( ( A i^i B ) e. Fin -> ( # ` ( A i^i B ) ) e. NN0 ) |
|
| 27 | 6 26 | syl | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A i^i B ) ) e. NN0 ) |
| 28 | 27 | nn0cnd | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A i^i B ) ) e. CC ) |
| 29 | hashcl | |- ( ( B \ A ) e. Fin -> ( # ` ( B \ A ) ) e. NN0 ) |
|
| 30 | 2 29 | syl | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( B \ A ) ) e. NN0 ) |
| 31 | 30 | nn0cnd | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( B \ A ) ) e. CC ) |
| 32 | 25 28 31 | subadd2d | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( ( # ` B ) - ( # ` ( A i^i B ) ) ) = ( # ` ( B \ A ) ) <-> ( ( # ` ( B \ A ) ) + ( # ` ( A i^i B ) ) ) = ( # ` B ) ) ) |
| 33 | 22 32 | mpbird | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` B ) - ( # ` ( A i^i B ) ) ) = ( # ` ( B \ A ) ) ) |
| 34 | 33 | oveq2d | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) + ( ( # ` B ) - ( # ` ( A i^i B ) ) ) ) = ( ( # ` A ) + ( # ` ( B \ A ) ) ) ) |
| 35 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 36 | 35 | adantr | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` A ) e. NN0 ) |
| 37 | 36 | nn0cnd | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` A ) e. CC ) |
| 38 | 37 25 28 | addsubassd | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( ( # ` A ) + ( # ` B ) ) - ( # ` ( A i^i B ) ) ) = ( ( # ` A ) + ( ( # ` B ) - ( # ` ( A i^i B ) ) ) ) ) |
| 39 | undif2 | |- ( A u. ( B \ A ) ) = ( A u. B ) |
|
| 40 | 39 | fveq2i | |- ( # ` ( A u. ( B \ A ) ) ) = ( # ` ( A u. B ) ) |
| 41 | disjdif | |- ( A i^i ( B \ A ) ) = (/) |
|
| 42 | 41 | a1i | |- ( ( A e. Fin /\ B e. Fin ) -> ( A i^i ( B \ A ) ) = (/) ) |
| 43 | hashun | |- ( ( A e. Fin /\ ( B \ A ) e. Fin /\ ( A i^i ( B \ A ) ) = (/) ) -> ( # ` ( A u. ( B \ A ) ) ) = ( ( # ` A ) + ( # ` ( B \ A ) ) ) ) |
|
| 44 | 3 2 42 43 | syl3anc | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. ( B \ A ) ) ) = ( ( # ` A ) + ( # ` ( B \ A ) ) ) ) |
| 45 | 40 44 | eqtr3id | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) + ( # ` ( B \ A ) ) ) ) |
| 46 | 34 38 45 | 3eqtr4rd | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) = ( ( ( # ` A ) + ( # ` B ) ) - ( # ` ( A i^i B ) ) ) ) |