This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a set is never minus infinity. (Contributed by Alexander van der Vekens, 21-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashnemnf | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ≠ -∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnn0pnf | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) ) | |
| 2 | mnfnre | ⊢ -∞ ∉ ℝ | |
| 3 | df-nel | ⊢ ( -∞ ∉ ℝ ↔ ¬ -∞ ∈ ℝ ) | |
| 4 | nn0re | ⊢ ( -∞ ∈ ℕ0 → -∞ ∈ ℝ ) | |
| 5 | 4 | con3i | ⊢ ( ¬ -∞ ∈ ℝ → ¬ -∞ ∈ ℕ0 ) |
| 6 | 3 5 | sylbi | ⊢ ( -∞ ∉ ℝ → ¬ -∞ ∈ ℕ0 ) |
| 7 | 2 6 | ax-mp | ⊢ ¬ -∞ ∈ ℕ0 |
| 8 | eleq1 | ⊢ ( ( ♯ ‘ 𝐴 ) = -∞ → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ -∞ ∈ ℕ0 ) ) | |
| 9 | 7 8 | mtbiri | ⊢ ( ( ♯ ‘ 𝐴 ) = -∞ → ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 10 | 9 | necon2ai | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ 𝐴 ) ≠ -∞ ) |
| 11 | pnfnemnf | ⊢ +∞ ≠ -∞ | |
| 12 | neeq1 | ⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ( ♯ ‘ 𝐴 ) ≠ -∞ ↔ +∞ ≠ -∞ ) ) | |
| 13 | 11 12 | mpbiri | ⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ♯ ‘ 𝐴 ) ≠ -∞ ) |
| 14 | 10 13 | jaoi | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) → ( ♯ ‘ 𝐴 ) ≠ -∞ ) |
| 15 | 1 14 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ≠ -∞ ) |