This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real addition of the size of an infinite set with the size of an arbitrary set yields plus infinity. (Contributed by Alexander van der Vekens, 20-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashinfxadd | |- ( ( A e. V /\ B e. W /\ ( # ` A ) e/ NN0 ) -> ( ( # ` A ) +e ( # ` B ) ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnn0pnf | |- ( A e. V -> ( ( # ` A ) e. NN0 \/ ( # ` A ) = +oo ) ) |
|
| 2 | df-nel | |- ( ( # ` A ) e/ NN0 <-> -. ( # ` A ) e. NN0 ) |
|
| 3 | 2 | anbi2i | |- ( ( ( ( # ` A ) = +oo \/ ( # ` A ) e. NN0 ) /\ ( # ` A ) e/ NN0 ) <-> ( ( ( # ` A ) = +oo \/ ( # ` A ) e. NN0 ) /\ -. ( # ` A ) e. NN0 ) ) |
| 4 | pm5.61 | |- ( ( ( ( # ` A ) = +oo \/ ( # ` A ) e. NN0 ) /\ -. ( # ` A ) e. NN0 ) <-> ( ( # ` A ) = +oo /\ -. ( # ` A ) e. NN0 ) ) |
|
| 5 | 3 4 | sylbb | |- ( ( ( ( # ` A ) = +oo \/ ( # ` A ) e. NN0 ) /\ ( # ` A ) e/ NN0 ) -> ( ( # ` A ) = +oo /\ -. ( # ` A ) e. NN0 ) ) |
| 6 | 5 | ex | |- ( ( ( # ` A ) = +oo \/ ( # ` A ) e. NN0 ) -> ( ( # ` A ) e/ NN0 -> ( ( # ` A ) = +oo /\ -. ( # ` A ) e. NN0 ) ) ) |
| 7 | 6 | orcoms | |- ( ( ( # ` A ) e. NN0 \/ ( # ` A ) = +oo ) -> ( ( # ` A ) e/ NN0 -> ( ( # ` A ) = +oo /\ -. ( # ` A ) e. NN0 ) ) ) |
| 8 | 1 7 | syl | |- ( A e. V -> ( ( # ` A ) e/ NN0 -> ( ( # ` A ) = +oo /\ -. ( # ` A ) e. NN0 ) ) ) |
| 9 | 8 | imp | |- ( ( A e. V /\ ( # ` A ) e/ NN0 ) -> ( ( # ` A ) = +oo /\ -. ( # ` A ) e. NN0 ) ) |
| 10 | 9 | 3adant2 | |- ( ( A e. V /\ B e. W /\ ( # ` A ) e/ NN0 ) -> ( ( # ` A ) = +oo /\ -. ( # ` A ) e. NN0 ) ) |
| 11 | oveq1 | |- ( ( # ` A ) = +oo -> ( ( # ` A ) +e ( # ` B ) ) = ( +oo +e ( # ` B ) ) ) |
|
| 12 | hashxrcl | |- ( B e. W -> ( # ` B ) e. RR* ) |
|
| 13 | hashnemnf | |- ( B e. W -> ( # ` B ) =/= -oo ) |
|
| 14 | 12 13 | jca | |- ( B e. W -> ( ( # ` B ) e. RR* /\ ( # ` B ) =/= -oo ) ) |
| 15 | 14 | 3ad2ant2 | |- ( ( A e. V /\ B e. W /\ ( # ` A ) e/ NN0 ) -> ( ( # ` B ) e. RR* /\ ( # ` B ) =/= -oo ) ) |
| 16 | xaddpnf2 | |- ( ( ( # ` B ) e. RR* /\ ( # ` B ) =/= -oo ) -> ( +oo +e ( # ` B ) ) = +oo ) |
|
| 17 | 15 16 | syl | |- ( ( A e. V /\ B e. W /\ ( # ` A ) e/ NN0 ) -> ( +oo +e ( # ` B ) ) = +oo ) |
| 18 | 11 17 | sylan9eqr | |- ( ( ( A e. V /\ B e. W /\ ( # ` A ) e/ NN0 ) /\ ( # ` A ) = +oo ) -> ( ( # ` A ) +e ( # ` B ) ) = +oo ) |
| 19 | 18 | expcom | |- ( ( # ` A ) = +oo -> ( ( A e. V /\ B e. W /\ ( # ` A ) e/ NN0 ) -> ( ( # ` A ) +e ( # ` B ) ) = +oo ) ) |
| 20 | 19 | adantr | |- ( ( ( # ` A ) = +oo /\ -. ( # ` A ) e. NN0 ) -> ( ( A e. V /\ B e. W /\ ( # ` A ) e/ NN0 ) -> ( ( # ` A ) +e ( # ` B ) ) = +oo ) ) |
| 21 | 10 20 | mpcom | |- ( ( A e. V /\ B e. W /\ ( # ` A ) e/ NN0 ) -> ( ( # ` A ) +e ( # ` B ) ) = +oo ) |