This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the hash function for a set is either a nonnegative integer or positive infinity. TODO-AV: mark as OBSOLETE and replace it by hashxnn0 ? (Contributed by Alexander van der Vekens, 6-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashnn0pnf | ⊢ ( 𝑀 ∈ 𝑉 → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashf | ⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) | |
| 2 | 1 | a1i | ⊢ ( 𝑀 ∈ 𝑉 → ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) ) |
| 3 | elex | ⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) | |
| 4 | 2 3 | ffvelcdmd | ⊢ ( 𝑀 ∈ 𝑉 → ( ♯ ‘ 𝑀 ) ∈ ( ℕ0 ∪ { +∞ } ) ) |
| 5 | elun | ⊢ ( ( ♯ ‘ 𝑀 ) ∈ ( ℕ0 ∪ { +∞ } ) ↔ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) ∈ { +∞ } ) ) | |
| 6 | elsni | ⊢ ( ( ♯ ‘ 𝑀 ) ∈ { +∞ } → ( ♯ ‘ 𝑀 ) = +∞ ) | |
| 7 | 6 | orim2i | ⊢ ( ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) ∈ { +∞ } ) → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |
| 8 | 5 7 | sylbi | ⊢ ( ( ♯ ‘ 𝑀 ) ∈ ( ℕ0 ∪ { +∞ } ) → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝑀 ∈ 𝑉 → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |