This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgt12el | |- ( ( V e. W /\ 1 < ( # ` V ) ) -> E. a e. V E. b e. V a =/= b ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash0 | |- ( # ` (/) ) = 0 |
|
| 2 | fveq2 | |- ( (/) = V -> ( # ` (/) ) = ( # ` V ) ) |
|
| 3 | 1 2 | eqtr3id | |- ( (/) = V -> 0 = ( # ` V ) ) |
| 4 | breq2 | |- ( ( # ` V ) = 0 -> ( 1 < ( # ` V ) <-> 1 < 0 ) ) |
|
| 5 | 4 | biimpd | |- ( ( # ` V ) = 0 -> ( 1 < ( # ` V ) -> 1 < 0 ) ) |
| 6 | 5 | eqcoms | |- ( 0 = ( # ` V ) -> ( 1 < ( # ` V ) -> 1 < 0 ) ) |
| 7 | 0le1 | |- 0 <_ 1 |
|
| 8 | 0re | |- 0 e. RR |
|
| 9 | 1re | |- 1 e. RR |
|
| 10 | 8 9 | lenlti | |- ( 0 <_ 1 <-> -. 1 < 0 ) |
| 11 | pm2.21 | |- ( -. 1 < 0 -> ( 1 < 0 -> E. a e. V E. b e. V a =/= b ) ) |
|
| 12 | 10 11 | sylbi | |- ( 0 <_ 1 -> ( 1 < 0 -> E. a e. V E. b e. V a =/= b ) ) |
| 13 | 7 12 | ax-mp | |- ( 1 < 0 -> E. a e. V E. b e. V a =/= b ) |
| 14 | 6 13 | syl6com | |- ( 1 < ( # ` V ) -> ( 0 = ( # ` V ) -> E. a e. V E. b e. V a =/= b ) ) |
| 15 | 14 | adantl | |- ( ( V e. W /\ 1 < ( # ` V ) ) -> ( 0 = ( # ` V ) -> E. a e. V E. b e. V a =/= b ) ) |
| 16 | 15 | com12 | |- ( 0 = ( # ` V ) -> ( ( V e. W /\ 1 < ( # ` V ) ) -> E. a e. V E. b e. V a =/= b ) ) |
| 17 | 3 16 | syl | |- ( (/) = V -> ( ( V e. W /\ 1 < ( # ` V ) ) -> E. a e. V E. b e. V a =/= b ) ) |
| 18 | df-ne | |- ( (/) =/= V <-> -. (/) = V ) |
|
| 19 | necom | |- ( (/) =/= V <-> V =/= (/) ) |
|
| 20 | 18 19 | bitr3i | |- ( -. (/) = V <-> V =/= (/) ) |
| 21 | ralnex | |- ( A. a e. V -. E. b e. V a =/= b <-> -. E. a e. V E. b e. V a =/= b ) |
|
| 22 | ralnex | |- ( A. b e. V -. a =/= b <-> -. E. b e. V a =/= b ) |
|
| 23 | nne | |- ( -. a =/= b <-> a = b ) |
|
| 24 | equcom | |- ( a = b <-> b = a ) |
|
| 25 | 23 24 | bitri | |- ( -. a =/= b <-> b = a ) |
| 26 | 25 | ralbii | |- ( A. b e. V -. a =/= b <-> A. b e. V b = a ) |
| 27 | 22 26 | bitr3i | |- ( -. E. b e. V a =/= b <-> A. b e. V b = a ) |
| 28 | 27 | ralbii | |- ( A. a e. V -. E. b e. V a =/= b <-> A. a e. V A. b e. V b = a ) |
| 29 | 21 28 | bitr3i | |- ( -. E. a e. V E. b e. V a =/= b <-> A. a e. V A. b e. V b = a ) |
| 30 | eqsn | |- ( V =/= (/) -> ( V = { a } <-> A. b e. V b = a ) ) |
|
| 31 | 30 | adantl | |- ( ( V e. W /\ V =/= (/) ) -> ( V = { a } <-> A. b e. V b = a ) ) |
| 32 | 31 | bicomd | |- ( ( V e. W /\ V =/= (/) ) -> ( A. b e. V b = a <-> V = { a } ) ) |
| 33 | 32 | ralbidv | |- ( ( V e. W /\ V =/= (/) ) -> ( A. a e. V A. b e. V b = a <-> A. a e. V V = { a } ) ) |
| 34 | fveq2 | |- ( V = { a } -> ( # ` V ) = ( # ` { a } ) ) |
|
| 35 | hashsnle1 | |- ( # ` { a } ) <_ 1 |
|
| 36 | 34 35 | eqbrtrdi | |- ( V = { a } -> ( # ` V ) <_ 1 ) |
| 37 | 36 | a1i | |- ( ( V e. W /\ a e. V ) -> ( V = { a } -> ( # ` V ) <_ 1 ) ) |
| 38 | 37 | reximdva0 | |- ( ( V e. W /\ V =/= (/) ) -> E. a e. V ( V = { a } -> ( # ` V ) <_ 1 ) ) |
| 39 | r19.36v | |- ( E. a e. V ( V = { a } -> ( # ` V ) <_ 1 ) -> ( A. a e. V V = { a } -> ( # ` V ) <_ 1 ) ) |
|
| 40 | 38 39 | syl | |- ( ( V e. W /\ V =/= (/) ) -> ( A. a e. V V = { a } -> ( # ` V ) <_ 1 ) ) |
| 41 | 33 40 | sylbid | |- ( ( V e. W /\ V =/= (/) ) -> ( A. a e. V A. b e. V b = a -> ( # ` V ) <_ 1 ) ) |
| 42 | hashxrcl | |- ( V e. W -> ( # ` V ) e. RR* ) |
|
| 43 | 42 | adantr | |- ( ( V e. W /\ V =/= (/) ) -> ( # ` V ) e. RR* ) |
| 44 | 1xr | |- 1 e. RR* |
|
| 45 | xrlenlt | |- ( ( ( # ` V ) e. RR* /\ 1 e. RR* ) -> ( ( # ` V ) <_ 1 <-> -. 1 < ( # ` V ) ) ) |
|
| 46 | 43 44 45 | sylancl | |- ( ( V e. W /\ V =/= (/) ) -> ( ( # ` V ) <_ 1 <-> -. 1 < ( # ` V ) ) ) |
| 47 | 41 46 | sylibd | |- ( ( V e. W /\ V =/= (/) ) -> ( A. a e. V A. b e. V b = a -> -. 1 < ( # ` V ) ) ) |
| 48 | 29 47 | biimtrid | |- ( ( V e. W /\ V =/= (/) ) -> ( -. E. a e. V E. b e. V a =/= b -> -. 1 < ( # ` V ) ) ) |
| 49 | 48 | con4d | |- ( ( V e. W /\ V =/= (/) ) -> ( 1 < ( # ` V ) -> E. a e. V E. b e. V a =/= b ) ) |
| 50 | 49 | impancom | |- ( ( V e. W /\ 1 < ( # ` V ) ) -> ( V =/= (/) -> E. a e. V E. b e. V a =/= b ) ) |
| 51 | 50 | com12 | |- ( V =/= (/) -> ( ( V e. W /\ 1 < ( # ` V ) ) -> E. a e. V E. b e. V a =/= b ) ) |
| 52 | 20 51 | sylbi | |- ( -. (/) = V -> ( ( V e. W /\ 1 < ( # ` V ) ) -> E. a e. V E. b e. V a =/= b ) ) |
| 53 | 17 52 | pm2.61i | |- ( ( V e. W /\ 1 < ( # ` V ) ) -> E. a e. V E. b e. V a =/= b ) |