This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgt12el2 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 2 | fveq2 | ⊢ ( ∅ = 𝑉 → ( ♯ ‘ ∅ ) = ( ♯ ‘ 𝑉 ) ) | |
| 3 | 1 2 | eqtr3id | ⊢ ( ∅ = 𝑉 → 0 = ( ♯ ‘ 𝑉 ) ) |
| 4 | breq2 | ⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( 1 < ( ♯ ‘ 𝑉 ) ↔ 1 < 0 ) ) | |
| 5 | 4 | biimpd | ⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( 1 < ( ♯ ‘ 𝑉 ) → 1 < 0 ) ) |
| 6 | 5 | eqcoms | ⊢ ( 0 = ( ♯ ‘ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → 1 < 0 ) ) |
| 7 | 0le1 | ⊢ 0 ≤ 1 | |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | 1re | ⊢ 1 ∈ ℝ | |
| 10 | 8 9 | lenlti | ⊢ ( 0 ≤ 1 ↔ ¬ 1 < 0 ) |
| 11 | pm2.21 | ⊢ ( ¬ 1 < 0 → ( 1 < 0 → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) | |
| 12 | 10 11 | sylbi | ⊢ ( 0 ≤ 1 → ( 1 < 0 → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
| 13 | 7 12 | ax-mp | ⊢ ( 1 < 0 → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) |
| 14 | 6 13 | syl6com | ⊢ ( 1 < ( ♯ ‘ 𝑉 ) → ( 0 = ( ♯ ‘ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ( 0 = ( ♯ ‘ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
| 16 | 3 15 | syl5com | ⊢ ( ∅ = 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
| 17 | df-ne | ⊢ ( ∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉 ) | |
| 18 | necom | ⊢ ( ∅ ≠ 𝑉 ↔ 𝑉 ≠ ∅ ) | |
| 19 | 17 18 | bitr3i | ⊢ ( ¬ ∅ = 𝑉 ↔ 𝑉 ≠ ∅ ) |
| 20 | ralnex | ⊢ ( ∀ 𝑏 ∈ 𝑉 ¬ 𝐴 ≠ 𝑏 ↔ ¬ ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) | |
| 21 | nne | ⊢ ( ¬ 𝐴 ≠ 𝑏 ↔ 𝐴 = 𝑏 ) | |
| 22 | eqcom | ⊢ ( 𝐴 = 𝑏 ↔ 𝑏 = 𝐴 ) | |
| 23 | 21 22 | bitri | ⊢ ( ¬ 𝐴 ≠ 𝑏 ↔ 𝑏 = 𝐴 ) |
| 24 | 23 | ralbii | ⊢ ( ∀ 𝑏 ∈ 𝑉 ¬ 𝐴 ≠ 𝑏 ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ) |
| 25 | 20 24 | bitr3i | ⊢ ( ¬ ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ) |
| 26 | eqsn | ⊢ ( 𝑉 ≠ ∅ → ( 𝑉 = { 𝐴 } ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ) ) | |
| 27 | 26 | bicomd | ⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ↔ 𝑉 = { 𝐴 } ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ↔ 𝑉 = { 𝐴 } ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ↔ 𝑉 = { 𝐴 } ) ) |
| 30 | hashsnle1 | ⊢ ( ♯ ‘ { 𝐴 } ) ≤ 1 | |
| 31 | fveq2 | ⊢ ( 𝑉 = { 𝐴 } → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ { 𝐴 } ) ) | |
| 32 | 31 | breq1d | ⊢ ( 𝑉 = { 𝐴 } → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ( ♯ ‘ { 𝐴 } ) ≤ 1 ) ) |
| 33 | 32 | adantl | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑉 = { 𝐴 } ) → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ( ♯ ‘ { 𝐴 } ) ≤ 1 ) ) |
| 34 | 30 33 | mpbiri | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑉 = { 𝐴 } ) → ( ♯ ‘ 𝑉 ) ≤ 1 ) |
| 35 | 34 | ex | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝑉 = { 𝐴 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
| 36 | 29 35 | sylbid | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
| 37 | hashxrcl | ⊢ ( 𝑉 ∈ 𝑊 → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) | |
| 38 | 37 | adantr | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
| 40 | 1xr | ⊢ 1 ∈ ℝ* | |
| 41 | xrlenlt | ⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) | |
| 42 | 39 40 41 | sylancl | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
| 43 | 36 42 | sylibd | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 → ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
| 44 | 25 43 | biimtrid | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ¬ ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 → ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
| 45 | 44 | con4d | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
| 46 | 45 | exp31 | ⊢ ( 𝑉 ∈ 𝑊 → ( 𝑉 ≠ ∅ → ( 𝐴 ∈ 𝑉 → ( 1 < ( ♯ ‘ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) ) ) |
| 47 | 46 | com24 | ⊢ ( 𝑉 ∈ 𝑊 → ( 1 < ( ♯ ‘ 𝑉 ) → ( 𝐴 ∈ 𝑉 → ( 𝑉 ≠ ∅ → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) ) ) |
| 48 | 47 | 3imp | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝑉 ≠ ∅ → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
| 49 | 48 | com12 | ⊢ ( 𝑉 ≠ ∅ → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
| 50 | 19 49 | sylbi | ⊢ ( ¬ ∅ = 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
| 51 | 16 50 | pm2.61i | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) |