This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of one direction of 19.36 . (The other direction holds iff A is nonempty, see r19.36zv .) (Contributed by NM, 22-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.36v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 2 | id | ⊢ ( 𝜓 → 𝜓 ) | |
| 3 | 2 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜓 ) |
| 4 | 3 | imim2i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |
| 5 | 1 4 | sylbi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |