This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashv01gt1 | ⊢ ( 𝑀 ∈ 𝑉 → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnn0pnf | ⊢ ( 𝑀 ∈ 𝑉 → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) | |
| 2 | elnn0 | ⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ↔ ( ( ♯ ‘ 𝑀 ) ∈ ℕ ∨ ( ♯ ‘ 𝑀 ) = 0 ) ) | |
| 3 | exmidne | ⊢ ( ( ♯ ‘ 𝑀 ) = 1 ∨ ( ♯ ‘ 𝑀 ) ≠ 1 ) | |
| 4 | nngt1ne1 | ⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ → ( 1 < ( ♯ ‘ 𝑀 ) ↔ ( ♯ ‘ 𝑀 ) ≠ 1 ) ) | |
| 5 | 4 | orbi2d | ⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ → ( ( ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ↔ ( ( ♯ ‘ 𝑀 ) = 1 ∨ ( ♯ ‘ 𝑀 ) ≠ 1 ) ) ) |
| 6 | 3 5 | mpbiri | ⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ → ( ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 7 | 6 | olcd | ⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) ) |
| 8 | 3orass | ⊢ ( ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ↔ ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 10 | 3mix1 | ⊢ ( ( ♯ ‘ 𝑀 ) = 0 → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) | |
| 11 | 9 10 | jaoi | ⊢ ( ( ( ♯ ‘ 𝑀 ) ∈ ℕ ∨ ( ♯ ‘ 𝑀 ) = 0 ) → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 12 | 2 11 | sylbi | ⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 13 | 1re | ⊢ 1 ∈ ℝ | |
| 14 | ltpnf | ⊢ ( 1 ∈ ℝ → 1 < +∞ ) | |
| 15 | 13 14 | ax-mp | ⊢ 1 < +∞ |
| 16 | breq2 | ⊢ ( ( ♯ ‘ 𝑀 ) = +∞ → ( 1 < ( ♯ ‘ 𝑀 ) ↔ 1 < +∞ ) ) | |
| 17 | 15 16 | mpbiri | ⊢ ( ( ♯ ‘ 𝑀 ) = +∞ → 1 < ( ♯ ‘ 𝑀 ) ) |
| 18 | 17 | 3mix3d | ⊢ ( ( ♯ ‘ 𝑀 ) = +∞ → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 19 | 12 18 | jaoi | ⊢ ( ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 20 | 1 19 | syl | ⊢ ( 𝑀 ∈ 𝑉 → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |