This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgcdeq | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) = if ( 𝑁 ∥ 𝑀 , ( ϕ ‘ ( 𝑀 / 𝑁 ) ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | ⊢ ( ( ϕ ‘ ( 𝑀 / 𝑁 ) ) = if ( 𝑁 ∥ 𝑀 , ( ϕ ‘ ( 𝑀 / 𝑁 ) ) , 0 ) → ( ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) = ( ϕ ‘ ( 𝑀 / 𝑁 ) ) ↔ ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) = if ( 𝑁 ∥ 𝑀 , ( ϕ ‘ ( 𝑀 / 𝑁 ) ) , 0 ) ) ) | |
| 2 | eqeq2 | ⊢ ( 0 = if ( 𝑁 ∥ 𝑀 , ( ϕ ‘ ( 𝑀 / 𝑁 ) ) , 0 ) → ( ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) = 0 ↔ ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) = if ( 𝑁 ∥ 𝑀 , ( ϕ ‘ ( 𝑀 / 𝑁 ) ) , 0 ) ) ) | |
| 3 | nndivdvds | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∥ 𝑀 ↔ ( 𝑀 / 𝑁 ) ∈ ℕ ) ) | |
| 4 | 3 | biimpa | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑁 ∥ 𝑀 ) → ( 𝑀 / 𝑁 ) ∈ ℕ ) |
| 5 | dfphi2 | ⊢ ( ( 𝑀 / 𝑁 ) ∈ ℕ → ( ϕ ‘ ( 𝑀 / 𝑁 ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑁 ∥ 𝑀 ) → ( ϕ ‘ ( 𝑀 / 𝑁 ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ) ) |
| 7 | eqid | ⊢ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } = { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } | |
| 8 | eqid | ⊢ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } = { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } | |
| 9 | eqid | ⊢ ( 𝑧 ∈ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ↦ ( 𝑧 · 𝑁 ) ) = ( 𝑧 ∈ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ↦ ( 𝑧 · 𝑁 ) ) | |
| 10 | 7 8 9 | hashgcdlem | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → ( 𝑧 ∈ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ↦ ( 𝑧 · 𝑁 ) ) : { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } –1-1-onto→ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) |
| 11 | 10 | 3expa | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑁 ∥ 𝑀 ) → ( 𝑧 ∈ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ↦ ( 𝑧 · 𝑁 ) ) : { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } –1-1-onto→ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) |
| 12 | ovex | ⊢ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∈ V | |
| 13 | 12 | rabex | ⊢ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ∈ V |
| 14 | 13 | f1oen | ⊢ ( ( 𝑧 ∈ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ↦ ( 𝑧 · 𝑁 ) ) : { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } –1-1-onto→ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } → { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ≈ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) |
| 15 | hasheni | ⊢ ( { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ≈ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } → ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ) = ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) ) | |
| 16 | 11 14 15 | 3syl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑁 ∥ 𝑀 ) → ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } ) = ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) ) |
| 17 | 6 16 | eqtr2d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑁 ∥ 𝑀 ) → ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) = ( ϕ ‘ ( 𝑀 / 𝑁 ) ) ) |
| 18 | simprr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑥 gcd 𝑀 ) = 𝑁 ) | |
| 19 | elfzoelz | ⊢ ( 𝑥 ∈ ( 0 ..^ 𝑀 ) → 𝑥 ∈ ℤ ) | |
| 20 | 19 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 gcd 𝑀 ) = 𝑁 ) ) → 𝑥 ∈ ℤ ) |
| 21 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 gcd 𝑀 ) = 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 23 | gcddvds | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑥 gcd 𝑀 ) ∥ 𝑥 ∧ ( 𝑥 gcd 𝑀 ) ∥ 𝑀 ) ) | |
| 24 | 20 22 23 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 gcd 𝑀 ) = 𝑁 ) ) → ( ( 𝑥 gcd 𝑀 ) ∥ 𝑥 ∧ ( 𝑥 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 25 | 24 | simprd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑥 gcd 𝑀 ) ∥ 𝑀 ) |
| 26 | 18 25 | eqbrtrrd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 gcd 𝑀 ) = 𝑁 ) ) → 𝑁 ∥ 𝑀 ) |
| 27 | 26 | expr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 gcd 𝑀 ) = 𝑁 → 𝑁 ∥ 𝑀 ) ) |
| 28 | 27 | con3d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ ( 0 ..^ 𝑀 ) ) → ( ¬ 𝑁 ∥ 𝑀 → ¬ ( 𝑥 gcd 𝑀 ) = 𝑁 ) ) |
| 29 | 28 | impancom | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 ∥ 𝑀 ) → ( 𝑥 ∈ ( 0 ..^ 𝑀 ) → ¬ ( 𝑥 gcd 𝑀 ) = 𝑁 ) ) |
| 30 | 29 | ralrimiv | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 ∥ 𝑀 ) → ∀ 𝑥 ∈ ( 0 ..^ 𝑀 ) ¬ ( 𝑥 gcd 𝑀 ) = 𝑁 ) |
| 31 | rabeq0 | ⊢ ( { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } = ∅ ↔ ∀ 𝑥 ∈ ( 0 ..^ 𝑀 ) ¬ ( 𝑥 gcd 𝑀 ) = 𝑁 ) | |
| 32 | 30 31 | sylibr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 ∥ 𝑀 ) → { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } = ∅ ) |
| 33 | 32 | fveq2d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 ∥ 𝑀 ) → ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) = ( ♯ ‘ ∅ ) ) |
| 34 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 35 | 33 34 | eqtrdi | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 ∥ 𝑀 ) → ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) = 0 ) |
| 36 | 1 2 17 35 | ifbothda | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑥 gcd 𝑀 ) = 𝑁 } ) = if ( 𝑁 ∥ 𝑀 , ( ϕ ‘ ( 𝑀 / 𝑁 ) ) , 0 ) ) |