This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgcdeq | |- ( ( M e. NN /\ N e. NN ) -> ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) = if ( N || M , ( phi ` ( M / N ) ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( ( phi ` ( M / N ) ) = if ( N || M , ( phi ` ( M / N ) ) , 0 ) -> ( ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) = ( phi ` ( M / N ) ) <-> ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) = if ( N || M , ( phi ` ( M / N ) ) , 0 ) ) ) |
|
| 2 | eqeq2 | |- ( 0 = if ( N || M , ( phi ` ( M / N ) ) , 0 ) -> ( ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) = 0 <-> ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) = if ( N || M , ( phi ` ( M / N ) ) , 0 ) ) ) |
|
| 3 | nndivdvds | |- ( ( M e. NN /\ N e. NN ) -> ( N || M <-> ( M / N ) e. NN ) ) |
|
| 4 | 3 | biimpa | |- ( ( ( M e. NN /\ N e. NN ) /\ N || M ) -> ( M / N ) e. NN ) |
| 5 | dfphi2 | |- ( ( M / N ) e. NN -> ( phi ` ( M / N ) ) = ( # ` { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } ) ) |
|
| 6 | 4 5 | syl | |- ( ( ( M e. NN /\ N e. NN ) /\ N || M ) -> ( phi ` ( M / N ) ) = ( # ` { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } ) ) |
| 7 | eqid | |- { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } = { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } |
|
| 8 | eqid | |- { x e. ( 0 ..^ M ) | ( x gcd M ) = N } = { x e. ( 0 ..^ M ) | ( x gcd M ) = N } |
|
| 9 | eqid | |- ( z e. { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } |-> ( z x. N ) ) = ( z e. { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } |-> ( z x. N ) ) |
|
| 10 | 7 8 9 | hashgcdlem | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> ( z e. { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } |-> ( z x. N ) ) : { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } -1-1-onto-> { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) |
| 11 | 10 | 3expa | |- ( ( ( M e. NN /\ N e. NN ) /\ N || M ) -> ( z e. { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } |-> ( z x. N ) ) : { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } -1-1-onto-> { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) |
| 12 | ovex | |- ( 0 ..^ ( M / N ) ) e. _V |
|
| 13 | 12 | rabex | |- { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } e. _V |
| 14 | 13 | f1oen | |- ( ( z e. { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } |-> ( z x. N ) ) : { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } -1-1-onto-> { x e. ( 0 ..^ M ) | ( x gcd M ) = N } -> { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } ~~ { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) |
| 15 | hasheni | |- ( { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } ~~ { x e. ( 0 ..^ M ) | ( x gcd M ) = N } -> ( # ` { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } ) = ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) ) |
|
| 16 | 11 14 15 | 3syl | |- ( ( ( M e. NN /\ N e. NN ) /\ N || M ) -> ( # ` { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } ) = ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) ) |
| 17 | 6 16 | eqtr2d | |- ( ( ( M e. NN /\ N e. NN ) /\ N || M ) -> ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) = ( phi ` ( M / N ) ) ) |
| 18 | simprr | |- ( ( ( M e. NN /\ N e. NN ) /\ ( x e. ( 0 ..^ M ) /\ ( x gcd M ) = N ) ) -> ( x gcd M ) = N ) |
|
| 19 | elfzoelz | |- ( x e. ( 0 ..^ M ) -> x e. ZZ ) |
|
| 20 | 19 | ad2antrl | |- ( ( ( M e. NN /\ N e. NN ) /\ ( x e. ( 0 ..^ M ) /\ ( x gcd M ) = N ) ) -> x e. ZZ ) |
| 21 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 22 | 21 | ad2antrr | |- ( ( ( M e. NN /\ N e. NN ) /\ ( x e. ( 0 ..^ M ) /\ ( x gcd M ) = N ) ) -> M e. ZZ ) |
| 23 | gcddvds | |- ( ( x e. ZZ /\ M e. ZZ ) -> ( ( x gcd M ) || x /\ ( x gcd M ) || M ) ) |
|
| 24 | 20 22 23 | syl2anc | |- ( ( ( M e. NN /\ N e. NN ) /\ ( x e. ( 0 ..^ M ) /\ ( x gcd M ) = N ) ) -> ( ( x gcd M ) || x /\ ( x gcd M ) || M ) ) |
| 25 | 24 | simprd | |- ( ( ( M e. NN /\ N e. NN ) /\ ( x e. ( 0 ..^ M ) /\ ( x gcd M ) = N ) ) -> ( x gcd M ) || M ) |
| 26 | 18 25 | eqbrtrrd | |- ( ( ( M e. NN /\ N e. NN ) /\ ( x e. ( 0 ..^ M ) /\ ( x gcd M ) = N ) ) -> N || M ) |
| 27 | 26 | expr | |- ( ( ( M e. NN /\ N e. NN ) /\ x e. ( 0 ..^ M ) ) -> ( ( x gcd M ) = N -> N || M ) ) |
| 28 | 27 | con3d | |- ( ( ( M e. NN /\ N e. NN ) /\ x e. ( 0 ..^ M ) ) -> ( -. N || M -> -. ( x gcd M ) = N ) ) |
| 29 | 28 | impancom | |- ( ( ( M e. NN /\ N e. NN ) /\ -. N || M ) -> ( x e. ( 0 ..^ M ) -> -. ( x gcd M ) = N ) ) |
| 30 | 29 | ralrimiv | |- ( ( ( M e. NN /\ N e. NN ) /\ -. N || M ) -> A. x e. ( 0 ..^ M ) -. ( x gcd M ) = N ) |
| 31 | rabeq0 | |- ( { x e. ( 0 ..^ M ) | ( x gcd M ) = N } = (/) <-> A. x e. ( 0 ..^ M ) -. ( x gcd M ) = N ) |
|
| 32 | 30 31 | sylibr | |- ( ( ( M e. NN /\ N e. NN ) /\ -. N || M ) -> { x e. ( 0 ..^ M ) | ( x gcd M ) = N } = (/) ) |
| 33 | 32 | fveq2d | |- ( ( ( M e. NN /\ N e. NN ) /\ -. N || M ) -> ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) = ( # ` (/) ) ) |
| 34 | hash0 | |- ( # ` (/) ) = 0 |
|
| 35 | 33 34 | eqtrdi | |- ( ( ( M e. NN /\ N e. NN ) /\ -. N || M ) -> ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) = 0 ) |
| 36 | 1 2 17 35 | ifbothda | |- ( ( M e. NN /\ N e. NN ) -> ( # ` { x e. ( 0 ..^ M ) | ( x gcd M ) = N } ) = if ( N || M , ( phi ` ( M / N ) ) , 0 ) ) |