This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zltaddlt1le | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( ( 𝑀 + 𝐴 ) < 𝑁 ↔ ( 𝑀 + 𝐴 ) ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → 𝑀 ∈ ℝ ) |
| 3 | elioore | ⊢ ( 𝐴 ∈ ( 0 (,) 1 ) → 𝐴 ∈ ℝ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ ) |
| 5 | 2 4 | readdcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( 𝑀 + 𝐴 ) ∈ ℝ ) |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( 𝑀 + 𝐴 ) ∈ ℝ ) |
| 7 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → 𝑁 ∈ ℝ ) |
| 9 | ltle | ⊢ ( ( ( 𝑀 + 𝐴 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑀 + 𝐴 ) < 𝑁 → ( 𝑀 + 𝐴 ) ≤ 𝑁 ) ) | |
| 10 | 6 8 9 | syl2anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( ( 𝑀 + 𝐴 ) < 𝑁 → ( 𝑀 + 𝐴 ) ≤ 𝑁 ) ) |
| 11 | elioo3g | ⊢ ( 𝐴 ∈ ( 0 (,) 1 ) ↔ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ( 0 < 𝐴 ∧ 𝐴 < 1 ) ) ) | |
| 12 | simpl | ⊢ ( ( 0 < 𝐴 ∧ 𝐴 < 1 ) → 0 < 𝐴 ) | |
| 13 | 11 12 | simplbiim | ⊢ ( 𝐴 ∈ ( 0 (,) 1 ) → 0 < 𝐴 ) |
| 14 | 3 13 | elrpd | ⊢ ( 𝐴 ∈ ( 0 (,) 1 ) → 𝐴 ∈ ℝ+ ) |
| 15 | addlelt | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑀 + 𝐴 ) ≤ 𝑁 → 𝑀 < 𝑁 ) ) | |
| 16 | 1 7 14 15 | syl3an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( ( 𝑀 + 𝐴 ) ≤ 𝑁 → 𝑀 < 𝑁 ) ) |
| 17 | zltp1le | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) | |
| 18 | 17 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
| 19 | 3 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ ) |
| 20 | 1red | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → 1 ∈ ℝ ) | |
| 21 | 1 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → 𝑀 ∈ ℝ ) |
| 22 | simpr | ⊢ ( ( 0 < 𝐴 ∧ 𝐴 < 1 ) → 𝐴 < 1 ) | |
| 23 | 11 22 | simplbiim | ⊢ ( 𝐴 ∈ ( 0 (,) 1 ) → 𝐴 < 1 ) |
| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → 𝐴 < 1 ) |
| 25 | 19 20 21 24 | ltadd2dd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( 𝑀 + 𝐴 ) < ( 𝑀 + 1 ) ) |
| 26 | peano2z | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 + 1 ) ∈ ℤ ) | |
| 27 | 26 | zred | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 + 1 ) ∈ ℝ ) |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( 𝑀 + 1 ) ∈ ℝ ) |
| 29 | ltletr | ⊢ ( ( ( 𝑀 + 𝐴 ) ∈ ℝ ∧ ( 𝑀 + 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( 𝑀 + 𝐴 ) < ( 𝑀 + 1 ) ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) → ( 𝑀 + 𝐴 ) < 𝑁 ) ) | |
| 30 | 6 28 8 29 | syl3anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( ( ( 𝑀 + 𝐴 ) < ( 𝑀 + 1 ) ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) → ( 𝑀 + 𝐴 ) < 𝑁 ) ) |
| 31 | 25 30 | mpand | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( ( 𝑀 + 1 ) ≤ 𝑁 → ( 𝑀 + 𝐴 ) < 𝑁 ) ) |
| 32 | 18 31 | sylbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( 𝑀 < 𝑁 → ( 𝑀 + 𝐴 ) < 𝑁 ) ) |
| 33 | 16 32 | syld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( ( 𝑀 + 𝐴 ) ≤ 𝑁 → ( 𝑀 + 𝐴 ) < 𝑁 ) ) |
| 34 | 10 33 | impbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 0 (,) 1 ) ) → ( ( 𝑀 + 𝐴 ) < 𝑁 ↔ ( 𝑀 + 𝐴 ) ≤ 𝑁 ) ) |