This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | halfleoddlt | |- ( ( N e. ZZ /\ -. 2 || N /\ M e. ZZ ) -> ( ( N / 2 ) <_ M <-> ( N / 2 ) < M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | |- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 2 | 0xr | |- 0 e. RR* |
|
| 3 | 1xr | |- 1 e. RR* |
|
| 4 | halfre | |- ( 1 / 2 ) e. RR |
|
| 5 | 4 | rexri | |- ( 1 / 2 ) e. RR* |
| 6 | 2 3 5 | 3pm3.2i | |- ( 0 e. RR* /\ 1 e. RR* /\ ( 1 / 2 ) e. RR* ) |
| 7 | halfgt0 | |- 0 < ( 1 / 2 ) |
|
| 8 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 9 | 7 8 | pm3.2i | |- ( 0 < ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) |
| 10 | elioo3g | |- ( ( 1 / 2 ) e. ( 0 (,) 1 ) <-> ( ( 0 e. RR* /\ 1 e. RR* /\ ( 1 / 2 ) e. RR* ) /\ ( 0 < ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) ) ) |
|
| 11 | 6 9 10 | mpbir2an | |- ( 1 / 2 ) e. ( 0 (,) 1 ) |
| 12 | zltaddlt1le | |- ( ( n e. ZZ /\ M e. ZZ /\ ( 1 / 2 ) e. ( 0 (,) 1 ) ) -> ( ( n + ( 1 / 2 ) ) < M <-> ( n + ( 1 / 2 ) ) <_ M ) ) |
|
| 13 | 11 12 | mp3an3 | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( n + ( 1 / 2 ) ) < M <-> ( n + ( 1 / 2 ) ) <_ M ) ) |
| 14 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 15 | 14 | adantr | |- ( ( n e. ZZ /\ M e. ZZ ) -> n e. CC ) |
| 16 | 1cnd | |- ( ( n e. ZZ /\ M e. ZZ ) -> 1 e. CC ) |
|
| 17 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 18 | 17 | a1i | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 19 | muldivdir | |- ( ( n e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( n + ( 1 / 2 ) ) ) |
|
| 20 | 15 16 18 19 | syl3anc | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( n + ( 1 / 2 ) ) ) |
| 21 | 20 | breq1d | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) / 2 ) < M <-> ( n + ( 1 / 2 ) ) < M ) ) |
| 22 | 20 | breq1d | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) / 2 ) <_ M <-> ( n + ( 1 / 2 ) ) <_ M ) ) |
| 23 | 13 21 22 | 3bitr4rd | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) / 2 ) <_ M <-> ( ( ( 2 x. n ) + 1 ) / 2 ) < M ) ) |
| 24 | oveq1 | |- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( N / 2 ) ) |
|
| 25 | 24 | breq1d | |- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( ( 2 x. n ) + 1 ) / 2 ) <_ M <-> ( N / 2 ) <_ M ) ) |
| 26 | 24 | breq1d | |- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( ( 2 x. n ) + 1 ) / 2 ) < M <-> ( N / 2 ) < M ) ) |
| 27 | 25 26 | bibi12d | |- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( ( ( 2 x. n ) + 1 ) / 2 ) <_ M <-> ( ( ( 2 x. n ) + 1 ) / 2 ) < M ) <-> ( ( N / 2 ) <_ M <-> ( N / 2 ) < M ) ) ) |
| 28 | 23 27 | syl5ibcom | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N -> ( ( N / 2 ) <_ M <-> ( N / 2 ) < M ) ) ) |
| 29 | 28 | ex | |- ( n e. ZZ -> ( M e. ZZ -> ( ( ( 2 x. n ) + 1 ) = N -> ( ( N / 2 ) <_ M <-> ( N / 2 ) < M ) ) ) ) |
| 30 | 29 | adantl | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( M e. ZZ -> ( ( ( 2 x. n ) + 1 ) = N -> ( ( N / 2 ) <_ M <-> ( N / 2 ) < M ) ) ) ) |
| 31 | 30 | com23 | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N -> ( M e. ZZ -> ( ( N / 2 ) <_ M <-> ( N / 2 ) < M ) ) ) ) |
| 32 | 31 | rexlimdva | |- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( M e. ZZ -> ( ( N / 2 ) <_ M <-> ( N / 2 ) < M ) ) ) ) |
| 33 | 1 32 | sylbid | |- ( N e. ZZ -> ( -. 2 || N -> ( M e. ZZ -> ( ( N / 2 ) <_ M <-> ( N / 2 ) < M ) ) ) ) |
| 34 | 33 | 3imp | |- ( ( N e. ZZ /\ -. 2 || N /\ M e. ZZ ) -> ( ( N / 2 ) <_ M <-> ( N / 2 ) < M ) ) |