This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 13-May-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h2hl.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| h2hl.2 | ⊢ 𝑈 ∈ NrmCVec | ||
| h2hl.3 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | ||
| h2hl.4 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| h2hl.5 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | h2hlm | ⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h2hl.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | h2hl.2 | ⊢ 𝑈 ∈ NrmCVec | |
| 3 | h2hl.3 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
| 4 | h2hl.4 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 5 | h2hl.5 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 6 | df-hlim | ⊢ ⇝𝑣 = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) } | |
| 7 | 6 | relopabiv | ⊢ Rel ⇝𝑣 |
| 8 | relres | ⊢ Rel ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) | |
| 9 | 6 | eleq2i | ⊢ ( 〈 𝑓 , 𝑥 〉 ∈ ⇝𝑣 ↔ 〈 𝑓 , 𝑥 〉 ∈ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) } ) |
| 10 | opabidw | ⊢ ( 〈 𝑓 , 𝑥 〉 ∈ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) } ↔ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) | |
| 11 | 3 | hlex | ⊢ ℋ ∈ V |
| 12 | nnex | ⊢ ℕ ∈ V | |
| 13 | 11 12 | elmap | ⊢ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ℋ ) |
| 14 | 13 | anbi1i | ⊢ ( ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ↔ ( 𝑓 : ℕ ⟶ ℋ ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 15 | df-br | ⊢ ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ↔ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 16 | 3 4 | imsxmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ ℋ ) ) |
| 17 | 2 16 | mp1i | ⊢ ( 𝑓 : ℕ ⟶ ℋ → 𝐷 ∈ ( ∞Met ‘ ℋ ) ) |
| 18 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 19 | 1zzd | ⊢ ( 𝑓 : ℕ ⟶ ℋ → 1 ∈ ℤ ) | |
| 20 | eqidd | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 21 | id | ⊢ ( 𝑓 : ℕ ⟶ ℋ → 𝑓 : ℕ ⟶ ℋ ) | |
| 22 | 5 17 18 19 20 21 | lmmbrf | ⊢ ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ) ) ) |
| 23 | eluznn | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) | |
| 24 | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) | |
| 25 | 1 2 3 4 | h2hmetdval | ⊢ ( ( ( 𝑓 ‘ 𝑘 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) = ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) ) |
| 26 | 24 25 | sylan | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) = ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) ) |
| 27 | 26 | breq1d | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 28 | 27 | an32s | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 29 | 23 28 | sylan2 | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 30 | 29 | anassrs | ⊢ ( ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 31 | 30 | ralbidva | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 32 | 31 | rexbidva | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 33 | 32 | ralbidv | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 34 | 33 | pm5.32da | ⊢ ( 𝑓 : ℕ ⟶ ℋ → ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ) |
| 35 | 22 34 | bitrd | ⊢ ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ) |
| 36 | 15 35 | bitr3id | ⊢ ( 𝑓 : ℕ ⟶ ℋ → ( 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ) |
| 37 | 36 | pm5.32i | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ↔ ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ) |
| 38 | 14 37 | bitr2i | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 39 | anass | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ↔ ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ) | |
| 40 | opelres | ⊢ ( 𝑥 ∈ V → ( 〈 𝑓 , 𝑥 〉 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ) ) | |
| 41 | 40 | elv | ⊢ ( 〈 𝑓 , 𝑥 〉 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 42 | 38 39 41 | 3bitr4i | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ↔ 〈 𝑓 , 𝑥 〉 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) ) |
| 43 | 9 10 42 | 3bitri | ⊢ ( 〈 𝑓 , 𝑥 〉 ∈ ⇝𝑣 ↔ 〈 𝑓 , 𝑥 〉 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) ) |
| 44 | 7 8 43 | eqrelriiv | ⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) |