This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 13-May-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h2hl.1 | |- U = <. <. +h , .h >. , normh >. |
|
| h2hl.2 | |- U e. NrmCVec |
||
| h2hl.3 | |- ~H = ( BaseSet ` U ) |
||
| h2hl.4 | |- D = ( IndMet ` U ) |
||
| h2hl.5 | |- J = ( MetOpen ` D ) |
||
| Assertion | h2hlm | |- ~~>v = ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h2hl.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | h2hl.2 | |- U e. NrmCVec |
|
| 3 | h2hl.3 | |- ~H = ( BaseSet ` U ) |
|
| 4 | h2hl.4 | |- D = ( IndMet ` U ) |
|
| 5 | h2hl.5 | |- J = ( MetOpen ` D ) |
|
| 6 | df-hlim | |- ~~>v = { <. f , x >. | ( ( f : NN --> ~H /\ x e. ~H ) /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) } |
|
| 7 | 6 | relopabiv | |- Rel ~~>v |
| 8 | relres | |- Rel ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) |
|
| 9 | 6 | eleq2i | |- ( <. f , x >. e. ~~>v <-> <. f , x >. e. { <. f , x >. | ( ( f : NN --> ~H /\ x e. ~H ) /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) } ) |
| 10 | opabidw | |- ( <. f , x >. e. { <. f , x >. | ( ( f : NN --> ~H /\ x e. ~H ) /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) } <-> ( ( f : NN --> ~H /\ x e. ~H ) /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) ) |
|
| 11 | 3 | hlex | |- ~H e. _V |
| 12 | nnex | |- NN e. _V |
|
| 13 | 11 12 | elmap | |- ( f e. ( ~H ^m NN ) <-> f : NN --> ~H ) |
| 14 | 13 | anbi1i | |- ( ( f e. ( ~H ^m NN ) /\ <. f , x >. e. ( ~~>t ` J ) ) <-> ( f : NN --> ~H /\ <. f , x >. e. ( ~~>t ` J ) ) ) |
| 15 | df-br | |- ( f ( ~~>t ` J ) x <-> <. f , x >. e. ( ~~>t ` J ) ) |
|
| 16 | 3 4 | imsxmet | |- ( U e. NrmCVec -> D e. ( *Met ` ~H ) ) |
| 17 | 2 16 | mp1i | |- ( f : NN --> ~H -> D e. ( *Met ` ~H ) ) |
| 18 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 19 | 1zzd | |- ( f : NN --> ~H -> 1 e. ZZ ) |
|
| 20 | eqidd | |- ( ( f : NN --> ~H /\ k e. NN ) -> ( f ` k ) = ( f ` k ) ) |
|
| 21 | id | |- ( f : NN --> ~H -> f : NN --> ~H ) |
|
| 22 | 5 17 18 19 20 21 | lmmbrf | |- ( f : NN --> ~H -> ( f ( ~~>t ` J ) x <-> ( x e. ~H /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( f ` k ) D x ) < y ) ) ) |
| 23 | eluznn | |- ( ( j e. NN /\ k e. ( ZZ>= ` j ) ) -> k e. NN ) |
|
| 24 | ffvelcdm | |- ( ( f : NN --> ~H /\ k e. NN ) -> ( f ` k ) e. ~H ) |
|
| 25 | 1 2 3 4 | h2hmetdval | |- ( ( ( f ` k ) e. ~H /\ x e. ~H ) -> ( ( f ` k ) D x ) = ( normh ` ( ( f ` k ) -h x ) ) ) |
| 26 | 24 25 | sylan | |- ( ( ( f : NN --> ~H /\ k e. NN ) /\ x e. ~H ) -> ( ( f ` k ) D x ) = ( normh ` ( ( f ` k ) -h x ) ) ) |
| 27 | 26 | breq1d | |- ( ( ( f : NN --> ~H /\ k e. NN ) /\ x e. ~H ) -> ( ( ( f ` k ) D x ) < y <-> ( normh ` ( ( f ` k ) -h x ) ) < y ) ) |
| 28 | 27 | an32s | |- ( ( ( f : NN --> ~H /\ x e. ~H ) /\ k e. NN ) -> ( ( ( f ` k ) D x ) < y <-> ( normh ` ( ( f ` k ) -h x ) ) < y ) ) |
| 29 | 23 28 | sylan2 | |- ( ( ( f : NN --> ~H /\ x e. ~H ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( f ` k ) D x ) < y <-> ( normh ` ( ( f ` k ) -h x ) ) < y ) ) |
| 30 | 29 | anassrs | |- ( ( ( ( f : NN --> ~H /\ x e. ~H ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( f ` k ) D x ) < y <-> ( normh ` ( ( f ` k ) -h x ) ) < y ) ) |
| 31 | 30 | ralbidva | |- ( ( ( f : NN --> ~H /\ x e. ~H ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( f ` k ) D x ) < y <-> A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) ) |
| 32 | 31 | rexbidva | |- ( ( f : NN --> ~H /\ x e. ~H ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( f ` k ) D x ) < y <-> E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) ) |
| 33 | 32 | ralbidv | |- ( ( f : NN --> ~H /\ x e. ~H ) -> ( A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( f ` k ) D x ) < y <-> A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) ) |
| 34 | 33 | pm5.32da | |- ( f : NN --> ~H -> ( ( x e. ~H /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( f ` k ) D x ) < y ) <-> ( x e. ~H /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) ) ) |
| 35 | 22 34 | bitrd | |- ( f : NN --> ~H -> ( f ( ~~>t ` J ) x <-> ( x e. ~H /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) ) ) |
| 36 | 15 35 | bitr3id | |- ( f : NN --> ~H -> ( <. f , x >. e. ( ~~>t ` J ) <-> ( x e. ~H /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) ) ) |
| 37 | 36 | pm5.32i | |- ( ( f : NN --> ~H /\ <. f , x >. e. ( ~~>t ` J ) ) <-> ( f : NN --> ~H /\ ( x e. ~H /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) ) ) |
| 38 | 14 37 | bitr2i | |- ( ( f : NN --> ~H /\ ( x e. ~H /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) ) <-> ( f e. ( ~H ^m NN ) /\ <. f , x >. e. ( ~~>t ` J ) ) ) |
| 39 | anass | |- ( ( ( f : NN --> ~H /\ x e. ~H ) /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) <-> ( f : NN --> ~H /\ ( x e. ~H /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) ) ) |
|
| 40 | opelres | |- ( x e. _V -> ( <. f , x >. e. ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) <-> ( f e. ( ~H ^m NN ) /\ <. f , x >. e. ( ~~>t ` J ) ) ) ) |
|
| 41 | 40 | elv | |- ( <. f , x >. e. ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) <-> ( f e. ( ~H ^m NN ) /\ <. f , x >. e. ( ~~>t ` J ) ) ) |
| 42 | 38 39 41 | 3bitr4i | |- ( ( ( f : NN --> ~H /\ x e. ~H ) /\ A. y e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` k ) -h x ) ) < y ) <-> <. f , x >. e. ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) ) |
| 43 | 9 10 42 | 3bitri | |- ( <. f , x >. e. ~~>v <-> <. f , x >. e. ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) ) |
| 44 | 7 8 43 | eqrelriiv | |- ~~>v = ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) |