This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair elementhood in a restriction. Exercise 13 of TakeutiZaring p. 25. (Contributed by NM, 13-Nov-1995) (Revised by BJ, 18-Feb-2022) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelres | ⊢ ( 𝐶 ∈ 𝑉 → ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 〈 𝐵 , 𝐶 〉 ∈ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( 𝑅 ↾ 𝐴 ) = ( 𝑅 ∩ ( 𝐴 × V ) ) | |
| 2 | 1 | elin2 | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑅 ↾ 𝐴 ) ↔ ( 〈 𝐵 , 𝐶 〉 ∈ 𝑅 ∧ 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × V ) ) ) |
| 3 | opelxp | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × V ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V ) ) | |
| 4 | elex | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ V ) | |
| 5 | 4 | biantrud | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐵 ∈ 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V ) ) ) |
| 6 | 3 5 | bitr4id | ⊢ ( 𝐶 ∈ 𝑉 → ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × V ) ↔ 𝐵 ∈ 𝐴 ) ) |
| 7 | 6 | anbi1cd | ⊢ ( 𝐶 ∈ 𝑉 → ( ( 〈 𝐵 , 𝐶 〉 ∈ 𝑅 ∧ 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × V ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ 〈 𝐵 , 𝐶 〉 ∈ 𝑅 ) ) ) |
| 8 | 2 7 | bitrid | ⊢ ( 𝐶 ∈ 𝑉 → ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 〈 𝐵 , 𝐶 〉 ∈ 𝑅 ) ) ) |