This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the limit relation for Hilbert space. See hlimi for its relational expression. Note that f : NN --> ~H is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in Beran p. 96. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hlim | ⊢ ⇝𝑣 = { 〈 𝑓 , 𝑤 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | chli | ⊢ ⇝𝑣 | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | vw | ⊢ 𝑤 | |
| 3 | 1 | cv | ⊢ 𝑓 |
| 4 | cn | ⊢ ℕ | |
| 5 | chba | ⊢ ℋ | |
| 6 | 4 5 3 | wf | ⊢ 𝑓 : ℕ ⟶ ℋ |
| 7 | 2 | cv | ⊢ 𝑤 |
| 8 | 7 5 | wcel | ⊢ 𝑤 ∈ ℋ |
| 9 | 6 8 | wa | ⊢ ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) |
| 10 | vx | ⊢ 𝑥 | |
| 11 | crp | ⊢ ℝ+ | |
| 12 | vy | ⊢ 𝑦 | |
| 13 | vz | ⊢ 𝑧 | |
| 14 | cuz | ⊢ ℤ≥ | |
| 15 | 12 | cv | ⊢ 𝑦 |
| 16 | 15 14 | cfv | ⊢ ( ℤ≥ ‘ 𝑦 ) |
| 17 | cno | ⊢ normℎ | |
| 18 | 13 | cv | ⊢ 𝑧 |
| 19 | 18 3 | cfv | ⊢ ( 𝑓 ‘ 𝑧 ) |
| 20 | cmv | ⊢ −ℎ | |
| 21 | 19 7 20 | co | ⊢ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) |
| 22 | 21 17 | cfv | ⊢ ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) |
| 23 | clt | ⊢ < | |
| 24 | 10 | cv | ⊢ 𝑥 |
| 25 | 22 24 23 | wbr | ⊢ ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 |
| 26 | 25 13 16 | wral | ⊢ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 |
| 27 | 26 12 4 | wrex | ⊢ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 |
| 28 | 27 10 11 | wral | ⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 |
| 29 | 9 28 | wa | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) |
| 30 | 29 1 2 | copab | ⊢ { 〈 𝑓 , 𝑤 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) } |
| 31 | 0 30 | wceq | ⊢ ⇝𝑣 = { 〈 𝑓 , 𝑤 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) } |