This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gtndiv | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → ¬ ( 𝐵 / 𝐴 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 5 | nngt0 | ⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) | |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → 0 < 𝐵 ) |
| 7 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → 0 < 𝐵 ) |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 𝐵 ∧ 𝐵 < 𝐴 ) → 0 < 𝐴 ) ) | |
| 10 | 8 9 | mp3an1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 𝐵 ∧ 𝐵 < 𝐴 ) → 0 < 𝐴 ) ) |
| 11 | 2 10 | sylan | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 𝐵 ∧ 𝐵 < 𝐴 ) → 0 < 𝐴 ) ) |
| 12 | 11 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → ( ( 0 < 𝐵 ∧ 𝐵 < 𝐴 ) → 0 < 𝐴 ) ) |
| 13 | 7 12 | mpand | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 < 𝐴 → 0 < 𝐴 ) ) |
| 14 | 13 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → 0 < 𝐴 ) |
| 15 | 3 4 6 14 | divgt0d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → 0 < ( 𝐵 / 𝐴 ) ) |
| 16 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → 𝐵 < 𝐴 ) | |
| 17 | 1re | ⊢ 1 ∈ ℝ | |
| 18 | ltdivmul2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐵 / 𝐴 ) < 1 ↔ 𝐵 < ( 1 · 𝐴 ) ) ) | |
| 19 | 17 18 | mp3an2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐵 / 𝐴 ) < 1 ↔ 𝐵 < ( 1 · 𝐴 ) ) ) |
| 20 | 3 4 14 19 | syl12anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → ( ( 𝐵 / 𝐴 ) < 1 ↔ 𝐵 < ( 1 · 𝐴 ) ) ) |
| 21 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 22 | 21 | mullidd | ⊢ ( 𝐴 ∈ ℝ → ( 1 · 𝐴 ) = 𝐴 ) |
| 23 | 22 | breq2d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 < ( 1 · 𝐴 ) ↔ 𝐵 < 𝐴 ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → ( 𝐵 < ( 1 · 𝐴 ) ↔ 𝐵 < 𝐴 ) ) |
| 25 | 20 24 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → ( ( 𝐵 / 𝐴 ) < 1 ↔ 𝐵 < 𝐴 ) ) |
| 26 | 16 25 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → ( 𝐵 / 𝐴 ) < 1 ) |
| 27 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 28 | 26 27 | breqtrrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → ( 𝐵 / 𝐴 ) < ( 0 + 1 ) ) |
| 29 | btwnnz | ⊢ ( ( 0 ∈ ℤ ∧ 0 < ( 𝐵 / 𝐴 ) ∧ ( 𝐵 / 𝐴 ) < ( 0 + 1 ) ) → ¬ ( 𝐵 / 𝐴 ) ∈ ℤ ) | |
| 30 | 1 15 28 29 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴 ) → ¬ ( 𝐵 / 𝐴 ) ∈ ℤ ) |