This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gtndiv | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> -. ( B / A ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 3 | 2 | 3ad2ant2 | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> B e. RR ) |
| 4 | simp1 | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> A e. RR ) |
|
| 5 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 6 | 5 | 3ad2ant2 | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> 0 < B ) |
| 7 | 5 | adantl | |- ( ( A e. RR /\ B e. NN ) -> 0 < B ) |
| 8 | 0re | |- 0 e. RR |
|
| 9 | lttr | |- ( ( 0 e. RR /\ B e. RR /\ A e. RR ) -> ( ( 0 < B /\ B < A ) -> 0 < A ) ) |
|
| 10 | 8 9 | mp3an1 | |- ( ( B e. RR /\ A e. RR ) -> ( ( 0 < B /\ B < A ) -> 0 < A ) ) |
| 11 | 2 10 | sylan | |- ( ( B e. NN /\ A e. RR ) -> ( ( 0 < B /\ B < A ) -> 0 < A ) ) |
| 12 | 11 | ancoms | |- ( ( A e. RR /\ B e. NN ) -> ( ( 0 < B /\ B < A ) -> 0 < A ) ) |
| 13 | 7 12 | mpand | |- ( ( A e. RR /\ B e. NN ) -> ( B < A -> 0 < A ) ) |
| 14 | 13 | 3impia | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> 0 < A ) |
| 15 | 3 4 6 14 | divgt0d | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> 0 < ( B / A ) ) |
| 16 | simp3 | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> B < A ) |
|
| 17 | 1re | |- 1 e. RR |
|
| 18 | ltdivmul2 | |- ( ( B e. RR /\ 1 e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( B / A ) < 1 <-> B < ( 1 x. A ) ) ) |
|
| 19 | 17 18 | mp3an2 | |- ( ( B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( B / A ) < 1 <-> B < ( 1 x. A ) ) ) |
| 20 | 3 4 14 19 | syl12anc | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> ( ( B / A ) < 1 <-> B < ( 1 x. A ) ) ) |
| 21 | recn | |- ( A e. RR -> A e. CC ) |
|
| 22 | 21 | mullidd | |- ( A e. RR -> ( 1 x. A ) = A ) |
| 23 | 22 | breq2d | |- ( A e. RR -> ( B < ( 1 x. A ) <-> B < A ) ) |
| 24 | 23 | 3ad2ant1 | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> ( B < ( 1 x. A ) <-> B < A ) ) |
| 25 | 20 24 | bitrd | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> ( ( B / A ) < 1 <-> B < A ) ) |
| 26 | 16 25 | mpbird | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> ( B / A ) < 1 ) |
| 27 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 28 | 26 27 | breqtrrdi | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> ( B / A ) < ( 0 + 1 ) ) |
| 29 | btwnnz | |- ( ( 0 e. ZZ /\ 0 < ( B / A ) /\ ( B / A ) < ( 0 + 1 ) ) -> -. ( B / A ) e. ZZ ) |
|
| 30 | 1 15 28 29 | mp3an2i | |- ( ( A e. RR /\ B e. NN /\ B < A ) -> -. ( B / A ) e. ZZ ) |