This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in Lang p. 4, first formula. (Contributed by AV, 26-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsplit1r.b | |- B = ( Base ` G ) |
|
| gsumsplit1r.p | |- .+ = ( +g ` G ) |
||
| gsumsplit1r.g | |- ( ph -> G e. V ) |
||
| gsumsplit1r.m | |- ( ph -> M e. ZZ ) |
||
| gsumsplit1r.n | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| gsumsplit1r.f | |- ( ph -> F : ( M ... ( N + 1 ) ) --> B ) |
||
| Assertion | gsumsplit1r | |- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` ( M ... N ) ) ) .+ ( F ` ( N + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit1r.b | |- B = ( Base ` G ) |
|
| 2 | gsumsplit1r.p | |- .+ = ( +g ` G ) |
|
| 3 | gsumsplit1r.g | |- ( ph -> G e. V ) |
|
| 4 | gsumsplit1r.m | |- ( ph -> M e. ZZ ) |
|
| 5 | gsumsplit1r.n | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 6 | gsumsplit1r.f | |- ( ph -> F : ( M ... ( N + 1 ) ) --> B ) |
|
| 7 | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 8 | 5 7 | syl | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 9 | 1 2 3 8 6 | gsumval2 | |- ( ph -> ( G gsum F ) = ( seq M ( .+ , F ) ` ( N + 1 ) ) ) |
| 10 | seqp1 | |- ( N e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( N + 1 ) ) = ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) ) |
|
| 11 | 5 10 | syl | |- ( ph -> ( seq M ( .+ , F ) ` ( N + 1 ) ) = ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) ) |
| 12 | fzssp1 | |- ( M ... N ) C_ ( M ... ( N + 1 ) ) |
|
| 13 | 12 | a1i | |- ( ph -> ( M ... N ) C_ ( M ... ( N + 1 ) ) ) |
| 14 | 6 13 | fssresd | |- ( ph -> ( F |` ( M ... N ) ) : ( M ... N ) --> B ) |
| 15 | 1 2 3 5 14 | gsumval2 | |- ( ph -> ( G gsum ( F |` ( M ... N ) ) ) = ( seq M ( .+ , ( F |` ( M ... N ) ) ) ` N ) ) |
| 16 | 4 | uzidd | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 17 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , ( F |` ( M ... N ) ) ) ` M ) = ( ( F |` ( M ... N ) ) ` M ) ) |
|
| 18 | 4 17 | syl | |- ( ph -> ( seq M ( .+ , ( F |` ( M ... N ) ) ) ` M ) = ( ( F |` ( M ... N ) ) ` M ) ) |
| 19 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 20 | 5 19 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 21 | 20 | fvresd | |- ( ph -> ( ( F |` ( M ... N ) ) ` M ) = ( F ` M ) ) |
| 22 | 18 21 | eqtrd | |- ( ph -> ( seq M ( .+ , ( F |` ( M ... N ) ) ) ` M ) = ( F ` M ) ) |
| 23 | fzp1ss | |- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
|
| 24 | 4 23 | syl | |- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
| 25 | 24 | sselda | |- ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> x e. ( M ... N ) ) |
| 26 | 25 | fvresd | |- ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> ( ( F |` ( M ... N ) ) ` x ) = ( F ` x ) ) |
| 27 | 16 22 5 26 | seqfveq2 | |- ( ph -> ( seq M ( .+ , ( F |` ( M ... N ) ) ) ` N ) = ( seq M ( .+ , F ) ` N ) ) |
| 28 | 15 27 | eqtr2d | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( G gsum ( F |` ( M ... N ) ) ) ) |
| 29 | 28 | oveq1d | |- ( ph -> ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) = ( ( G gsum ( F |` ( M ... N ) ) ) .+ ( F ` ( N + 1 ) ) ) ) |
| 30 | 9 11 29 | 3eqtrd | |- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` ( M ... N ) ) ) .+ ( F ` ( N + 1 ) ) ) ) |