This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumprval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumprval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumprval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| gsumprval.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| gsumprval.n | ⊢ ( 𝜑 → 𝑁 = ( 𝑀 + 1 ) ) | ||
| gsumprval.f | ⊢ ( 𝜑 → 𝐹 : { 𝑀 , 𝑁 } ⟶ 𝐵 ) | ||
| Assertion | gsumprval | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐹 ‘ 𝑀 ) + ( 𝐹 ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumprval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumprval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumprval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 4 | gsumprval.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | gsumprval.n | ⊢ ( 𝜑 → 𝑁 = ( 𝑀 + 1 ) ) | |
| 6 | gsumprval.f | ⊢ ( 𝜑 → 𝐹 : { 𝑀 , 𝑁 } ⟶ 𝐵 ) | |
| 7 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | peano2uz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 11 | fzpr | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) |
| 13 | 5 | eqcomd | ⊢ ( 𝜑 → ( 𝑀 + 1 ) = 𝑁 ) |
| 14 | 13 | preq2d | ⊢ ( 𝜑 → { 𝑀 , ( 𝑀 + 1 ) } = { 𝑀 , 𝑁 } ) |
| 15 | 12 14 | eqtrd | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , 𝑁 } ) |
| 16 | 15 | feq2d | ⊢ ( 𝜑 → ( 𝐹 : ( 𝑀 ... ( 𝑀 + 1 ) ) ⟶ 𝐵 ↔ 𝐹 : { 𝑀 , 𝑁 } ⟶ 𝐵 ) ) |
| 17 | 6 16 | mpbird | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑀 + 1 ) ) ⟶ 𝐵 ) |
| 18 | 1 2 3 10 17 | gsumval2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) |
| 19 | seqp1 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) | |
| 20 | 8 19 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
| 21 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 22 | 4 21 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 23 | 13 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑀 + 1 ) ) = ( 𝐹 ‘ 𝑁 ) ) |
| 24 | 22 23 | oveq12d | ⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) = ( ( 𝐹 ‘ 𝑀 ) + ( 𝐹 ‘ 𝑁 ) ) ) |
| 25 | 18 20 24 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐹 ‘ 𝑀 ) + ( 𝐹 ‘ 𝑁 ) ) ) |