This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumprval.b | |- B = ( Base ` G ) |
|
| gsumprval.p | |- .+ = ( +g ` G ) |
||
| gsumprval.g | |- ( ph -> G e. V ) |
||
| gsumprval.m | |- ( ph -> M e. ZZ ) |
||
| gsumprval.n | |- ( ph -> N = ( M + 1 ) ) |
||
| gsumprval.f | |- ( ph -> F : { M , N } --> B ) |
||
| Assertion | gsumprval | |- ( ph -> ( G gsum F ) = ( ( F ` M ) .+ ( F ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumprval.b | |- B = ( Base ` G ) |
|
| 2 | gsumprval.p | |- .+ = ( +g ` G ) |
|
| 3 | gsumprval.g | |- ( ph -> G e. V ) |
|
| 4 | gsumprval.m | |- ( ph -> M e. ZZ ) |
|
| 5 | gsumprval.n | |- ( ph -> N = ( M + 1 ) ) |
|
| 6 | gsumprval.f | |- ( ph -> F : { M , N } --> B ) |
|
| 7 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 8 | 4 7 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 9 | peano2uz | |- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
| 11 | fzpr | |- ( M e. ZZ -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
|
| 12 | 4 11 | syl | |- ( ph -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
| 13 | 5 | eqcomd | |- ( ph -> ( M + 1 ) = N ) |
| 14 | 13 | preq2d | |- ( ph -> { M , ( M + 1 ) } = { M , N } ) |
| 15 | 12 14 | eqtrd | |- ( ph -> ( M ... ( M + 1 ) ) = { M , N } ) |
| 16 | 15 | feq2d | |- ( ph -> ( F : ( M ... ( M + 1 ) ) --> B <-> F : { M , N } --> B ) ) |
| 17 | 6 16 | mpbird | |- ( ph -> F : ( M ... ( M + 1 ) ) --> B ) |
| 18 | 1 2 3 10 17 | gsumval2 | |- ( ph -> ( G gsum F ) = ( seq M ( .+ , F ) ` ( M + 1 ) ) ) |
| 19 | seqp1 | |- ( M e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( M + 1 ) ) = ( ( seq M ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
|
| 20 | 8 19 | syl | |- ( ph -> ( seq M ( .+ , F ) ` ( M + 1 ) ) = ( ( seq M ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
| 21 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
|
| 22 | 4 21 | syl | |- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 23 | 13 | fveq2d | |- ( ph -> ( F ` ( M + 1 ) ) = ( F ` N ) ) |
| 24 | 22 23 | oveq12d | |- ( ph -> ( ( seq M ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) = ( ( F ` M ) .+ ( F ` N ) ) ) |
| 25 | 18 20 24 | 3eqtrd | |- ( ph -> ( G gsum F ) = ( ( F ` M ) .+ ( F ` N ) ) ) |